45 женщин, у которых спектрофлюорофотометрическими и иммуноферментным методами были оценены общая антиокислительная активность сыворотки крови и параметры неферментативного звена системы антиоксидантной защиты: восстановленный и окисленный глутатион, α-токоферол, ретинол, мелатонин приняли участие в проспективном нерандомизированном исследовании. Уровень мелатонина определяли в 06.00–07.00 ч; 12.00–13.00 ч; 18.00–19.00 ч; 23.00–00.00 ч. Общеклиническое обследование позволило разделить участников исследования на две группы – перименопауза и постменопауза. Статистический анализ различий между и внутри групп был проведен с использованием непараметрических критериев. В результате проведенного исследования установлено: у женщин в постменопаузе по сравнению с женщинами перименопаузального периода ниже содержание α-токоферола (в 1,37 раза (р
антиоксидантная защита
менопауза
мелатонин
глутатион
Токоферол
1. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс. Патологические состояния и заболевания. – Новосибирск: Сибирское университетское издательство, 2017. – 284 с.
2. Kolesnikova L.I., Darenskaya M.A., Grebenkina L.A., Dolgikh M.I., Semenova N.V. Adaptive reactions of lipid metabolism in indigenous and non-indigenous female individuals of tofalarian population living under extreme environmental conditions. Journal of Evolutionary Biochemistry and Physiology, 2014, vol. 50, no. 5, pp. 392–398.
3. Kolesnikova L.I., Darenskaya M.A., Grebenkina L.A., Sholokhov L.F., Semenova N.V., Dolgikh M.I., Osipova E.V. Features of compensatory-adaptive reactions of an organism in female representatives of the evenk ethnos. Journal of Evolutionary Biochemistry and Physiology, 2016, vol. 52, no. 6, pp. 440–445.
4. Mata-Granados J.M., Cuenca-Acebedo R., Luque de Castro M.D., Quesada Gomez J.M. Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: a cross-sectional study. Journal of Bone and Mineral Metabolism, 2013, vol. 31, no. 4, pp. 455–460.
5. Ziaei S., Kazemnejad A., Zareai M. The effect of vitamin E on hot flashes in menopausal women. Gynecology and Obstetrics Investigation, 2007, vol. 64, no. 4, pp. 204–207.
6. Droge W., Schipper H.M. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 2007, no. 6, pp. 361–370.
7. Колесникова Л.И., Мадаева И.М., Семёнова Н.В., Осипова Е.В., Даренская М.А. Гендерные особенности процессов свободно-радикального окисления липидов при возрастных гормонально-дефицитных состояниях // Вестник РАМН. – 2016. – Т. 71, № 3. – С. 248–254.
8. Agarwal A., Sharma R., Gupta S., Harlev A., Ahmad G., du Plessis S.S., Esteves S.C., Wang S.M., Durairajanayagam D. (Eds.) Oxidative Stress in Human Reproduction: Shedding Light on a Complicated Phenomenon, NY: Springer, 2017, 190 p.
9. Kolesnikova L.I., Kolesnikov S.I., Darenskaya M.A., Grebenkina L.A., Nikitina O.A., Lazareva L.M., Suturina L.V., Danusevich I.N., Druzhinina E.B., Semendyaev A.A. Activity of LPO processes in women with polycystic ovarian syndrome and infertility. Bulletin of Experimental Biology and Medicine, 2017, vol. 162, no. 3, pp. 320–322.
10. Казимирко В.К., Мальцев В.И., Бутылин В.Ю., Горобец Н.И. Свободнорадикальное окисление и антиоксидантная терапия. – Киев: Морион, 2004. – 160 с.
11. Kancheva V.D., Kasaikina O.T. Bio-antioxidants – a chemical base of their antioxidant activity and beneficial effect on human health. Current Medicinal Chemistry, 2013, vol. 20, no. 37, pp. 4784–4805.
12. Колесникова Л.И., Даренская М.А., Колесников С.И. Свободнорадикальное окисление: взгляд патофизиолога // Бюллетень сибирской медицины. – 2017. – Т. 16, № 4. – С. 16–29.
13. Анисимов В.Н., Виноградова И.А. Старение женской репродуктивной системы и мелатонин. – СПб., 2008. – 180 с.
14. Tamura H., Takasaki A., Taketani T., Tanabe M., Lee L., Tamura I., Maekawa R., Aasada H., Yamagata Y., Sugino N. Melatonin and female reproduction. Journal of Obstetrics and Gynaecology Research, 2014, vol. 40, no. 1, pp. 1–11.
15. Кольтовер В.К. Свободнорадикальная теория старeния: исторический очерк // Успехи геронтологии. – 2000. – № 4. – C. 33–40.
В тканях живого организма непрерывно протекают процессы перекисного окисления липидов (ПОЛ), интенсивность которых регулируется системой антиоксидантной защиты (АОЗ), состоящей из множества компонентов, способных предотвращать возможные повреждения структур клетки . Соотношение между активностью свободнорадикальных процессов и компонентов системы АОЗ определяет не только интенсивность метаболизма, но и адаптационные возможности организма, а также в случае дисбаланса в работе системы «ПОЛ-АОЗ» в сторону интенсификации процессов липопероксидации, риск формирования окислительного стресса . В настоящее время показано, что такой физиологический процесс, как старение, сопровождается развитием окислительного стресса, что связано с нарушением регуляторного механизма, осуществляющего контроль над клеточным уровнем свободных радикалов. Однако причина дисрегуляции окислительно-восстановительного баланса до настоящего время не ясна . К настоящему времени проведено достаточно много исследований, касающихся оценки состояния системы АОЗ у женщин менопаузального возраста, однако их результаты не только неоднозначны, но и противоречивы . Актуальность таких исследований определяется необходимостью разработки профилактических и лечебных мероприятий по коррекции метаболических нарушений у женщин данной возрастной группы. Таким образом, целью данного исследования явилась сравнительная оценка общего антиоксидантного статуса и содержания некоторых компонентов неферментативного звена системы АОЗ у женщин в разных фазах климактерического периода.
Материалы и методы исследования
В исследовании в качестве добровольцев приняли участие 45 женщин, территорией проживания которых был г. Иркутск. Каждой женщиной было подписано информированное согласие на участие в проводимом исследовании, протокол которого был одобрен Комитетом по биомедицинской этике ФГБНУ НЦ ПЗСРЧ.
Результаты клинико-анамнестического обследования позволили разделить обследуемых на две группы:
Перименопаузальный период (n = 19). Среднее значение возраста в данной группе составило 49,08 ± 2,84 лет, ИМТ - 27,18 ± 4,58 кг/м2;
Постменопаузальный период (n = 26). Среднее значение возраста в данной группе составило 57,16 ± 1,12 лет, ИМТ - 27,96 ± 3,57 кг/м2.
В качестве критерий исключения при проведении исследования были использованы обострение хронических заболеваний, ожирение, заболевания эндокринного генеза, применение заместительной гормональной терапии, преждевременная ранняя менопауза, хирургическая менопауза.
При анализе медицинской документации у женщин обследуемых групп были выявлены некоторые соматические заболевания (рис. 1).
Выраженность климактерического синдрома определялась количественной оценкой с использованием модифицированного менопаузального индекса Купперман - Уваровой (1983). Полученные результаты представлены на рис. 2.
Параметры системы АОЗ (ретинол, альфа-токоферол, общую антиокислительную активность (АОА)) определяли в сыворотке крови, забор которой осуществляли рано утром, натощак, из локтевой вены. Гемолизат, приготовленный из эритроцитов, служил материалом для определения восстановленного и окисленного глутатионов (GSH и GSSG). Содержание ретинола и альфа-токоферола определяли методом Р.Ч. Черняускене с соавт. (1984); GSH и GSSG - методом P.J. Hisin и R. Hilf (1976); общую АОА сыворотки крови - методом Г.И. Клебанова с соавт. (1988). Концентрацию ретинола и альфа-токоферола выражали в мкмоль/л, GSH и GSSG - в ммоль/л, уровень общей АОА сыворотки крови - в усл. ед. Измерительными приборами служили спектрофотометр «Shimadzu RF-1650» (Япония) и спектрофлюорофотометр «Shimadzu RF-1501» (Япония).
Концентрация мелатонина определялась иммуноферментным методом в нестимулированной слюне. Временными точками для сбора биологического материала с использованием специальных пробирок (SaliCaps, IBL) были 6.00-7.00 ч, 12.00-13.00 ч, 18.00-19.00 ч, 23.00-00.00 ч. Слюна немедленно замораживалась и хранилась при температуре -20 °С. Забор слюнной жидкости производился в зимнее время года (январь-февраль). Измерительным прибором для определения концентрации гормона в пг/мл с использованием коммерческих наборов Buhlmann (Швейцария) служил анализатор «Микропланшетный ридер EL×808» (США).
Статистическая обработка данных была проведена с использованием программы «Statistica 6.1». Оценка на нормальность распределения количественных признаков показала неправильное распределение, вследствие чего для анализа различий между группами были применены непараметрические критерии, а именно Mann - Whitney Test; Kolmogorov - Smirnov Two-Sample Test; Wald - Wolfowitz Runs Test. Оценка различий количественных показателей внутри изучаемых групп была проведена с использованием W-критерия Вилкоксона. Анализ взаимосвязей количественных признаков внутри групп был проведен с использование корреляционного анализа Спирмана с определением коэффициента корреляции (r).
Рис. 1. Структура выявленных заболеваний у женщин в пери- и постменопаузе
Рис. 2. Сравнительная оценка тяжести климактерического синдрома между обследуемыми группами
Рис. 3. Параметры неферментативного звена системы АОЗ у женщин в разных фазах климактерического периода. Примечание: * - статистически значимые межгрупповые различия
Результаты исследования и их обсуждение
Результаты проведенного исследования свидетельствуют о более низком содержании α-токоферола (в 1,37 раза (р < 0,05)), ретинола (в 1,14 раза (р < 0,05)) и GSSG (в 1,16 раза (р < 0,05)) в группе женщин постменопаузального периода по сравнению с перименопаузой (рис. 3). Уровень общей АОА сыворотки крови не отличался между фазами климактерия и составил 15,89 ± 7,99 усл. ед. в перименопаузе и 14,29 ± 5,98 усл. ед. в постменопаузе.
Полученные данные, демонстрирующие более низкое содержание α-токоферола и ретинола в постменопаузе согласуются с рядом исследований . Вероятнее всего, это связано с их расходом на инактивацию продуктов ПОЛ, интенсивность которого нарастает с возрастом . Вследствие недостатка в организме α-токоферола происходит дестабилизация клеточных мембран, снижается их текучесть и продолжительность жизни эритроцитов. Дефицит в мембранах клеток витамина Е приводит к распаду ненасыщенных жирных кислот, а также к уменьшению их белкового состава . Влияние α-токоферола на репродуктивную систему несомненно вследствие его участия в стимуляции стероидогенеза в яичниках, а также биосинтеза белка в эндометрии и других органах-мишенях стероидных гормонов. Таким образом, недостаточный уровень данного антиоксиданта в организме способствует нарушению и угасанию репродуктивной функции .
Функциональные взаимосвязи между параметрами системы АОЗ в исследуемых группах
Другим жирорастворимым, не менее эффективным антиоксидантом является ретинол. С одной стороны, он взаимодействует со свободными радикалами различных видов, с другой стороны - обеспечивает стационарный уровень α-токоферола посредством усиления его антиоксидантного действия . Это подтверждают и выявленные в данном исследовании функциональные взаимосвязи между данными антиоксидантами (таблица).
Еще одной функцией ретинола является способность совместно с аскорбатом участвовать в ингибировании включения селена в состав глутатионпероксидазы. Фермент разлагает гидроперекиси, тем самым препятствуя их вовлечению в окислительный цикл и, наряду с токоферолом, практически полностью подавляет чрезмерную активацию свободнорадикальных процессов в биологических мембранах . Взаимосвязь α-токоферола и ретинола с глутатионовой системой подтверждается их корреляциями с GSH у женщин в перименопаузе.
К настоящему времени показано, что старение ассоциировано с прогрессирующим окислением глутатиона и других тиоловых соединений, следствием чего является снижение уровня GSH и, соответственно, соотношения GSH/GSSG . В данном исследовании не выявлено изменений в уровне GSH у женщин постменопаузального возраста, однако содержание GSSG у них увеличено. Данный факт может быть следствием изменения в работе энзимного звена глутатионовой системы - повышения активности глутатионпероксидазы, либо снижения активности глутатионредуктазы .
Одним из представительных антиоксидантов является гормон мелатонин, обладающий более выраженными антиоксидантными свойствами, чем у витамина Е и глутатиона, и его антиоксидантный эффект реализуется как путем прямого действия на свободные радикалы, так и через активацию ферментативного звена системы АОЗ, катализируя работу каталазы, супероксиддисмутазы, глутатионредуктазы, глутатионпероксидазы и глюкозо-6-фосфатдегидрогеназы . Подтверждением этого являются и выявленные корреляционные взаимосвязи между мелатонином и глутатионом у женщин в перименопаузе.
Результаты исследования циркадных ритмов секреции мелатонина у женщин в разных фазах климактерического периода представлены на рис. 4. Полученные данные подтверждают хронобиологические аспекты секреции мелатонина, продемонстрированные в многочисленных исследованиях, согласно которым у здоровых людей уровень гормона начинает повышаться в вечернее время, достигая максимума в ночное время суток . Достоверно значимые различия между ранними утренними часами и дневными, а также вечерними и ночными часами выявлены в обеих исследуемых группах. Более того, у женщин в перименопаузе обнаружен более высокий уровень мелатонина в ночное время по сравнению с ранними утренними часами (10,84 ± 7,33 пг/мл против 5,93 ± 4,51 пг/мл соответственно (p < 0,05)).
При оценке циркадной ритмики секреции мелатонина в зависимости от фазы климактерия выявлено, что у женщин в постменопаузальном периоде уровень гормона в дневные, вечерние и ночные часы значимо снижен по сравнению с группой женщин в перименопаузе (в 1,94 раза (р < 0,05), в 3,22 раза (р < 0,05) и в 1,54 раза (р < 0,05) соответственно), что согласуется с результатами проведенных ранее исследований, где показано возрастзависимое уменьшение уровня мелатонина. Учитывая функциональные изменения в эпифизе при старении, полученные результаты подтверждают данные о возрастном снижении основной функции шишковидной железы .
Рис. 4. Циркадная ритмика секреции мелатонина у женщин в разных фазах климактерического периода. Примечание. * - статистически значимые межгрупповые различия
Принимая во внимание отсутствие достоверно значимых различий по структуре соматической патологии между исследуемыми группами, результаты настоящего исследования согласуются с одним из заключений научной литературы, постулирующем следующее: в органах и тканях без возрастной патологии при старении происходит снижение активности энзимных и неэнзимных компонентов системы АОЗ, что может отражать возрастное уменьшение интенсивности окислительного метаболизма. В случае наличия какого-либо заболевания отмечается повышение активности антиоксидантов, свидетельствуя об интенсификации свободнорадикальных процессов, либо отсутствие каких-либо изменений в соответствующих органах и тканях .
Заключение
Полученные в ходе данного исследования результаты свидетельствуют о снижении ресурсов неферментативного звена системы АОЗ, таких как α-токоферол, ретинол, мелатонин, у женщин по мере прогрессирования климактерического периода, что может являться показанием к назначению антиоксидантной терапии у данной когорты населения в целях профилактики и коррекции окислительного стресса.
Исследование выполнено благодаря финансовой поддержке Совета по грантам Президента РФ (МК-3615.2017.4).
Библиографическая ссылка
Семёнова Н.В., Мадаева И.М., Шолохов Л.Ф., Колесникова Л.И. ОБЩИЙ АНТИОКСИДАНТНЫЙ СТАТУС И НЕФЕРМЕНТАТИВНОЕ ЗВЕНО СИСТЕМЫ АНТИОКСИДАНТНОЙ ЗАЩИТЫ У ЖЕНЩИН В МЕНОПАУЗЕ // Международный журнал прикладных и фундаментальных исследований. – 2018. – № 8. – С. 90-94;URL: https://сайт/ru/article/view?id=12371 (дата обращения: 03.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
Общий антиоксидантный статус (TAS) - показатель антиоксидантной системы организма. Исследование определяет возможность ферментов, белков и витаминов подавлять негативное действие свободных радикалов на клеточном уровне.
Образование свободных радикалов - постоянно происходящий в организме процесс, физиологически сбалансированный за счёт активности эндогенных антиоксидантных систем. При чрезмерном увеличении продукции свободных радикалов вследствие прооксидантных воздействий или несостоятельности антиоксидантной защиты развивается окислительный стресс, сопровождающийся повреждением белков, липидов и ДНК. Эти процессы значительно усиливаются на фоне снижения активности антиоксидантных систем организма (супероксиддисмутаза, глутатион пероксидаза (ГП), витамин Е, витамин А, селен), защищающих клетки и ткани от губительного действия свободных радикалов. В дальнейшем это приводит к развитию таких заболеваний, как атеросклероз, ИБС, сахарный диабет, артериальная гипертензия, иммунодефицитные состояния, злокачественные новообразования и к преждевременному старению.
Общий антиоксидантный статус сыворотки определяется присутствием антиоксидантных ферментов (супероксиддисмутаза, каталаза, глутатионпероксидаза, глутатионредуктаза и др.) и антиоксидантов неферментного действия (в их числе: альбумин, трансферрин, металлотионеины, мочевая кислота, липоевая кислота, глутатион, убихинол, витамины Е и С, каротиноиды, компоненты полифеноловой структуры, поступающие с растительной пищей, включая флавоноиды, и пр.). Для оценки состояния актиоксидантной защиты, помимо определения уровня наиболее важных антиоксидантных ферментов и неферментных антиоксидантов в крови, используют измерение суммарной антиоксидантной способности компонентов сыворотки. Определение общего антиоксидантного статуса помогает клиницисту глубже оценить состояние пациента, факторы, влияющие на развитие текущего заболевания, и, с учетом этого, оптимизировать терапию.
Показания:
- выявление дефицита антиоксидантов в организме и оценка риска заболеваний, ассоциированных с недостатком антиоксидантов;
- выявление дефицита микроэлементов и витаминов, связанных с антиоксидантными системами организма;
- выявление генетических форм дефицита ферментов;
- оценка антиоксидантного статуса организма в целях оптимизации терапии.
Кровь рекомендуется сдавать утром, в период с 8 до 12 часов. Взятие крови производится натощак или спустя 2–4 часов голодания. Допускается употребление воды без газа и сахара. Накануне сдачи исследования следует избегать пищевых перегрузок.
Интерпретация результатов
Снижение общего антиоксидантного статуса и изменения активности антиоксидантных ферментов, вследствие различных причин, можно наблюдать при следующих состояниях:
- лёгочная патология;
- сахарный диабет;
- дисфункция щитовидной железы;
- сердечно-сосудистые заболевания;
- неврологические и психиатрические заболевания;
- онкологическая патология;
- проведение химиотерапии;
- хронические воспалительные заболевания кишечника;
- ревматоидный артрит;
- некоторые инфекции;
- снижение активности антиоксидантной системы при дефиците антиоксидантов, поступающих с пищей (в т.ч. витаминов, микроэлементов).
Номенклатура МЗРФ (Приказ №804н): A09.05.238.001 "Определение общей антиоксидантной активности"
Биоматериал: Цельная кровь с гепарином
Срок выполнения (в лаборатории): 7 р.д. *
Описание
Определение антиоксидантной активности играет важнейшую роль для оценки защиты организма от оксидативного стресса. Это позволяет: определить лиц с повышенным риском развития ИБС, артериальной гипертензии, сахарного диабета, онкологических заболеваний, ретинопатии; выявить преждевременное старение, проводить мониторинг течения заболеваний, оценить эффективность терапии.
Также определение антиоксидантной активности помогает выявить количество антиоксидантов поступающих в организм человека, и есть ли необходимость дополнительного их введения. Антиоксидантная активность определяется присутствием антиоксидантных ферментов (супероксиддисмутаза, каталаза, глутатионредуктаза, глутатиопероксидаза) и антиоксидантов неферментного действия (витамины Е,С, каротиноиды, липоевая кислота, убихинон).
Определение антиоксидантной активности играет важнейшую роль для оценки защиты организма от оксидативного стресса. Это позволяет: определить лиц с повПоказания к назначению
- Оценка антиоксидантного статуса организма и оценка риска развития заболеваний, ассоциированных с дефицитом антиоксидантов (онкологические заболевания, заболевания сердца, ревматоижный артрит, сахарный диабет, ретинопатия, раннее старение)
- Пациентам страдающим гипертонической болезнью, атеросклеротическим поражением сосудов, сахарным диабетом, ишемической болезнью сердца - в качестве мониторинга за течением заболевания и оценки эффективности получаемой терапии; определение антиоксидантной защиты организма, и решения вопроса о необходимости дополниельнго приема антиоксидантных препаратов.
- Пациентам пожилого возраста, при плохом питании, курении, злоупотреблении алкоголем, стресса-для оценки антиоксидантной защиты организма, и решения вопроса о необходимости дополниельнго приема антиоксидантных препаратов.
- Пациентам на фоне химиотерапевтического лечения - для оценки антиоксидантной защиты организма, и решения вопроса о необходимости дополниельнго приема антиоксидантных препаратов.
- Пациентам на диете и ограничении питания - для оценки антиоксидантной защиты организма, и решения вопроса о необходимости дополниельнго приема антиоксидантных препаратов.
С этой услугой чаще всего заказывают
* На сайте указан максимально возможный срок выполнения исследования. Он отражает время выполнения исследования в лаборатории и не включает время на доставку биоматериала до лаборатории.
Приведенная информация носит справочный характер и не является публичной офертой. Для получения актуальной информации обратитесь в медицинский центр Исполнителя или call-центр.
Сравнительно недавно биохимики выделили новый критерий оценки состояния организма - антиоксидантный статус . Что такое скрывается под этим названием? На самом деле это совокупность количественных показателей того, насколько успешно клетки тела могут противостоять перекисному окислению.
Для чего нужны антиоксиданты
Существует широкий перечень патологических состояний, первоисточником которых являются свободные радикалы. Среди наиболее известных – это все процессы, связанные со старением и онкозаболевания. Наличие большого количества неспаренных электронов запускает цепные реакции, от которых сильно страдают клеточные мембраны. Таким образом, клетка более не в состоянии нормально справляться со своими обязанностями, и начинаются сбои в работе сначала отдельных органов, а затем и целых систем. Вещества, которые обладают антиоксидантной активностью , способны гасить эти реакции и предотвращать развитие грозных заболеваний.
Естественные антиоксиданты
В живом организме различают целый ряд веществ, которые в нормальном состоянии способны противостоять атакам свободных радикалов. У человека это:
- суперооксиддисмутаза (СОД)– фермент, в состав которого входят цинк, магний и медь. Он вступает в реакцию с радикалами кислорода и нейтрализует их. Играет большую роль в защите сердечной мышцы;Производные глутатиона, которые содержат селен, серу и витамины А, Е и С. Комплексы глутатиона стабилизируют мембраны клеток;
Церулоплазмин – внеклеточный фермент, который активен в плазме крови. Он взаимодействует с молекулами, которые содержат свободные радикалы, которые образовались в результате патологических состояний, таких как аллергические реакции, инфаркт миокарда и некоторые другие.
Для нормального функционирования этих ферментов обязательно присутствие в организме таких ко-энзимов, как витамины А, С, Е, цинк, селен и медь.
Лабораторное определение антиоксидантных показателей
Для того чтобы определить антиоксидантный статус организма , проводят ряд биохимических исследований, которые условно можно разделить на прямые и непрямые. К прямым методам определения относятся анализы на:
- СОД;Перекисное окисление липидов;
Общий антиоксидантный статус или TAS;
Глутатион-пероксидазу;
Наличие свободных жирных кислот;
Церулоплазмин.
К непрямым показателям относят определение в крови уровня витаминов – антиоксидантов, кофермента Q10, малонового альдегида и некоторых других биологически активных соединений.
Как проводится тест
Определение антиоксидантного статуса проводится в нативной венозной крови или в ее сыворотке при помощи специальных реагентов. Тест занимает в среднем 5-7 дней. Здоровым людям рекомендуется проводить его не реже чем раз в полгода, а при наличии видимых нарушений или с целью проверки эффективности антиоксидантной терапии – каждые 3 месяца. Результаты теста расшифровывает исключительно врач – иммунолог, который может назначить лекарственные препараты для коррекции показателей.
Любой активный процесс жизнедеятельности в организме человека, будь то патологический процесс или длительная активная физическая нагрузка, характеризуется высокой интенсивностью окислительных реакций, сопровождающихся выделением атомарного кислорода и свободных кислородсодержащих радикалов и перекисных соединений, обладающих мощным повреждающим действием для клеточных мембран.
Поэтому природой предусмотрена активная антиоксидантная защита, которой обладают белки, как например, лактоферрин или церулоплазмин. При этом если имеются нарушения адаптации иммунной системы к дисбалансу окислительно-восстановительных реакций, происходит так называемый «окислительный стресс», сопровождающийся накоплением токсических соединений кислорода, т.е. свободных радикалов и перекисных соединений, вызывающих токсикоз.
Основными симптомами любого токсикоза являются:
- частые головные боли и головокружения,
- повышенная утомляемость и раздражительность,
- «беспричинные» приступы слабости и снижение зрения,
- снижение аппетита, металлический привкус во рту, дискомфорт в желудочно-кишечном тракте,
- изменение температуры тела и потливость.
При возникновении стойкихсимптомов токсикоза и без квалифицированного медицинского вмешательства достаточно быстро можно ожидать развития или констатацию одного или нескольких патологических состояний:
- синдрома хронической усталости,
- аутоиммунных и аллергических состояний,
- различных видов бронхо-легочных заболеваний,
- эндокринных нарушений, в особенности щитовидной железы,
- атеросклеротических изменений сердечно-сосудистой системы даже у лиц молодого возраста,
- изменения генетического аппарата клеток, обусловливающего развития злокачественных опухолей
- вторичных иммунодефицитных состояний, характеризующихся частотой заболевания различными инфекциями,
- бесплодия.
Антиоксидантная система строго индивидуальна для каждого человека, т.к. зависит от генетических факторов, состояния иммунитета, пищевого рациона, возраста, сопутствующих заболеваний и т.д.
Исследование антиоксидантного статуса стало возможным только с середины 90-х годов XX века и поэтому в силу объективных причин этими исследованиями занимаются только профессиональные иммунологи.
Учитывая «бум» БАД (биологически активные добавки) в аптечной сети с декларированными свойствами антиоксидантов, исследование антиоксидантного статуса становится актуальным вдвойне, поскольку с учетом индивидуальных особенностей антиоксидантной системы каждого человека, выбор адекватных средств для ее коррекции можно проводить исключительно на основании результатов оценки показателей антиоксидантного статуса и звеньев иммунитета и выявленной степени изменений (Например, дисбаланс 1-ой степени в коррекции не нуждается, а дисбаланс 3-ей степени без коррекции приводит к быстрому развитию одного из перечисленных патологических синдромов). Только при таком подходе можно избежать развития дисбаланса окислительно-антиокислительных реакций в организме. Это особенно важно для людей молодого возраста, имеющих физические нагрузки и, следовательно, искусственно завышающих количество окислительных реакций в организме. В таких случаях особенно важен контроль за антиоксидантной системой. В качестве биологического материала для исследований иммунного и нтитиоксидантного статуса используется венозная кровь. Исследования проводят не чаще 1 раза в полугодие при отсутствии первичных отклонений и не чаще одного раза в 2-3 месяца при выявленных нарушениях и проводимой коррекции.