ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

Явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

Испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

Сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

А; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

- (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В…
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…

Выска-зал гипотезу: свет излучается и поглощается отдель-ными порциями — квантами (или фотонами). Энер-гия каждого фотона определяется формулой Е = hν , где h — постоянная Планка, равная 6,63 . 10 -34 Дж. с, ν — частота света. Гипотеза Планка объяснила мно-гие явления: в частности, явление фотоэффекта, от-крытого в 1887 г. немецким ученым Генрихом Гер-цем и изученного экспериментально русским ученым А. Г. Столетовым .

Фотоэффект это явление испускания элек-тронов веществом под действием света.

В результате исследований были установлены три закона фотоэффекта:

1. Сила тока насыщения прямо пропорцио-нальна интенсивности светового излучения, па-дающего на поверхность тела.

2. Максимальная кинетическая энергия фото-электронов линейно возрастает с частотой света и не за-висит от его интенсивности.

3. Если частота света меньше некоторой опре-деленной для данного вещества минимальной часто-ты, то фотоэффект не происходит.

Зависимость фототока от напряжения показа-на на рисунке 36.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объясне-ние: поглощая квант света, электрон приобретает энергию hv. При вылете из металла энергия каждого электрона уменьшается на определенную величину, которую называют работой выхода (А вых). Работа выхода — это работа, которую необходимо затратить, чтобы удалить электрон из металла. Максимальная энергия электронов после вылета (если нет других потерь) имеет вид: mv 2 /2 = hv — А вых, Это уравне-ние носит название уравнения Эйнштейна .

Если hν < А вых то фотоэффект не происходит. Значит, красная граница фотоэффекта равна ν min = А вых /h

Приборы, в основе принципа действия кото-рых лежит явление фотоэффекта, называют фото-элементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фото-элемента являются: слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в ки-но для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлемен-ты, в которых под действием света происходит изме-нение концентрации носителей тока.Они использу-ются при автоматическом управлении электрически-ми цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых ис-точников тока в часах, микрокалькуляторах, прохо-дят испытания первые солнечные автомобили, ис-пользуются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных ав-томатических станциях.


С явлением фотоэффекта связаны фотохимиче-ские процессы, протекающие под действием света в фотографических материалах.

Фотоэффектом называется освобождение (полное или частичное) электронов от связей с атомами и молекулами вещества под воздействием света (видимого, инфракрасного и ультрафиолетового). Если электроны выходят за пределы освещаемого вещества (полное освобождение), то фотоэффект называется внешним (открыт в 1887 г. Герцем и подробно исследован в 1888 г. Л. Г. Столетовым). Если же электроны теряют связь только со «своими» атомами и молекулами, но остаются внутри освещаемого вещества в качестве «свободных электронов» (частичное освобождение), увеличивая тем самым электропроводность вещества, то фотоэффект называется внутренним (открыт в 1873 г. американским физиком У. Смитом).

Внешний фотоэффект наблюдается у металлов. Если, например, цинковую пластинку, соединенную с электроскопом и заряженную отрицательно, осветить ультрафиолетовыми лучами, то электроскоп быстро разрядится; в случае положительно заряженной пластинки разрядки не происходит. Отсюда следует, что свет вырывает из металла отрицательно заряженные частицы; определение величины их заряда (выполненное в 1898 г. Дж. Дж. Томсоном) показало, что эти частицы являются электронами.

Принципиальная измерительная схема, с помощью которой исследовался внешний фотоэффект, изображена на рис. 368.

Отрицательный полюс батареи присоединен к металлической пластинке К (катод), положительный - к вспомогательному электроду а (анод). Оба электрода помещены в эвакуированный сосуд, имеющий кварцевое окно F (прозрачное для оптического излучения). Поскольку электрическая цепь оказывается разомкнутой, ток в ней отсутствует. При освещении катода К свет вырывает из него электроны (фотоэлектроны), устремляющиеся к аноду; в цепи появляется ток (фототок).

Схема дает возможность измерять силу фототока (гальванометром и скорость фотоэлектронов при различных значениях напряжения между катодом и анодом и при различных условиях освещения катода.

Экспериментальные исследования, выполненные Столетовым, а также другими учеными, привели к установлению следующих основных законов внешнего фотоэффекта.

1. Фототок насыщения I (т. е. максимальное число электронов. освобождаемых светом в 1 с) прямо пропорционален световому потоку Ф:

где коэффициент пропорциональности называется фоточувствительностью освещаемой поверхности (измеряется в микроамперах на люмен, сокращенно -

2. Скорость фотоэлектронов возрастает с увеличением частоты падающего света и не зависит от его интенсивности.

3. Независимо от интенсивности света фотоэффект начинается только при определенной (для данного металла) минимальной частоте света, называемой «красной границей» фотоэффекта.

Второй и третий законы фотоэффекта нельзя объяснить на основе волновой теории света. Действительно, по этой теории, интенсивность света пропорциональна квадрату амплитуды электромагнитной волны, «раскачивающей» электрон в металле. Поэтому свет любой частоты, но достаточно большой интенсивности, должен был бы вырывать электроны из металла; иначе говоря, не должно было бы существовать «красной границы» фотоэффекта. Этот вывод противоречит третьему закону фотоэффекта. Далее, чем больше интенсивность света, тем большую кинетическую энергию должен был бы получить от него электрон. Поэтому скорость фотоэлектрона должна была бы возрастать с увеличением интенсивности света; этот вывод противоречит второму закону фотоэффекта.

Законы внешнего фотоэффекта получают простое истолкование на основе квантовой теории света. По этой теории, величина светового потока определяется числом световых квантов (фотонов), падающих в единицу времени на поверхность металла. Каждый фотон может взаимодействовать только с одним электроном. Поэтому

максимальное число фотоэлектронов должно быть пропорционально световому потоку (первый закон фотоэффекта).

Энергия фотона поглощенная электроном, расходуется на совершение электроном работы выхода А из металла (см. § 87); оставшаяся часть этой энергии представляет собой кинетическую энергию фотоэлектрона масса электрона, его скорость). Тогда, согласно закону сохранения энергии, можно написать

Эта формула, предложенная в 1905 г. Эйнштейном и подтвержденная затем многочисленными экспериментами, называется уравнением Эйнштейна.

Из уравнения Эйнштейна непосредственно видно, что скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности (поскольку ни ни не зависят от интенсивности света). Этот вывод соответствует второму закону фотоэффекта.

Согласно формуле (26), с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (величина А постоянна для данного освещаемого вещества). При некоторой достаточно малой частоте (или длине волны кинетическая энергия фотоэлектрона станет равной нулю и фотоэффект прекратится (третий закон фотоэффекта). Это имеет место при т. е. в случае, когда вся энергия фотона расходуется на совершение работы выхода электрона. Тогда

Формулы (27) определяют «красную границу» фотоэффекта. Из этих формул следует, что она зависит от величины работы выхода (от материала фотокатода).

В таблице приведены значения работы выхода А (в электрон-вольтах) и красной границы фотоэффекта (в микрометрах) для некоторых металлов.

(см. скан)

Из таблицы видно, что, например, цезиевая пленка, нанесенная на вольфрам, дает фотоэффект даже при инфракрасном облучении, у натрия фотоэффект может быть вызван только видимым и ультрафиолетовым светом, а у цинка - только ультрафиолетовым.

На внешнем фотоэффекте основан важный физико-технический прибор, называемый вакуумным фотоэлементом (он является некоторым видоизменением установки, схематически изображенной на рис. 368).

Катодом К вакуумного фотоэлемента служит слой металла, нанесенный на внутреннюю поверхность эвакуированного стеклянного баллона В (рис. 369; G - гальванометр); анод А выполнен в виде металлического кольца, помещенного в центральной части баллона. При освещении катода в цепи фотоэлемента возникает электрический ток, сила которого пропорциональна величине светового потока.

Большинство современных фотоэлементов имеет сурьмяно-цезиевые или кислородно-цезиевые катоды, обладающие высокой фоточувствительностью. Кисйородно-цезиевые фотоэлементы чувствительны к инфракрасному и видимому свету (чувствительность сурьмяно-цезиевые фотоэлементы чувствительны к видимому и ультрафиолетовому свету (чувствительность

В некоторых случаях для увеличения чувствительности фотоэлемента его наполняют аргоном при давлении порядка 1 Па. Фототок в таком фотоэлементе усиливается вследствие ионизации аргдна, вызванной столкновениями фотоэлектронов с атомами аргона. Фоточувствительность газонаполненных фотоэлементов составляет около

Внутренний фотоэффект наблюдается у полупроводников и в меньшей мере у диэлектриков. Схема наблюдения внутреннего фотоэффекта показана на рис. 370. Полупроводниковая пластинка присоединена последовательное гальванометром к полюсам батареи. Ток в этой цепи незначителен, поскольку полупроводник обладает большим сопротивлением. Однако при освещении пластинки ток в цепи резко возрастает. Это обусловлено тем, что свет вырывает из атомов полупроводника электроны, которые, оставаясь внутри полупроводника, увеличивают его электропроводность (уменьшают сопротивление).

Фотоэлементы, основанные на внутреннем фотоэффекте, называются полупроводниковыми фотоэлементамиили фотосопротивлениями. Для их изготовления используют селен, сернистый свинец, сернистый кадмий и некоторые другие полупроводники. Фоточувствительность полупроводниковых фотоэлементов в сотни раз превышает фоточувствительность вакуумных фотоэлементов. Некоторые фотоэлементы обладают отчетливо выраженной спектральной чувствительностью. У селенового фотоэлемента спектральная чувствительность близка к спектральной чувствительности человеческого глаза (см рис. 304, § 118).

Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые

фотоэлементы непригодны для регистрации быстропеременных световых потоков.

На внутреннем фотоэффекте основана еще одна разновидность фотоэлемента - полупроводниковый фотоэлемент с запирающий слоем или вентильный фотоэлемент. Схема этого фотоэлемента дана на рис. 371.

Металлическая пластинка и нанесенный на нее тонкий слой полупроводника соединены внешней электрической цепью, содержащей гальванометр Как было показано (см. § 90), в зоне контакта полупроводника с металлом образуется запирающий слой Б, обладающий вентильной проводимостью: он пропускает электроны только в направлении от полупроводника к металлу. При освещении полупроводникового слоя в нем, благодаря внутреннему фотоэффекту, появляются свободные электроны. Проходя (в процессе хаотического движения) через запирающий слой в металл и не имея возможности перемещаться в обратном направлении, эти электроны образуют в металле избыточный отрицательный заряд. Полупроводник, лишенный части «своих» электронов, приобретает положительный заряд. Разность потенциалов (порядка 0,1 В), возникающая между полупроводником и металлом, создает ток в цепи фотоэлемента.

Таким образом, вентильный фотоэлемент представляет собой генератор тока, непосредственно преобразующий световую энергию в электрическую.

В качестве полупроводников в вентильном фотоэлементе используют селен, закись меди, сернистый таллий, германий, кремний. Фоточувствительность вентильных фотоэлементов составляет

Коэффициент полезного действия современных кремниевых фотоэлементов (освещаемых солнечным светом) достигает по теоретическим расчетам, его можно повысить до 22%.

Поскольку фототок пропорционален световому потоку, фотоэлементы используются в качестве фотометрических приборов. К таким приборам относятся, например, люксметр (измеритель освещенности) и фотоэлектрический экспонометр.

Фотоэлемент позволяет преобразовывать колебания светового потока в соответствующие колебания фототока, что находит широкое применение в технике звукового кино, телевидения и т. п.

Исключительно велико значение фотоэлементов для телемеханизации и автоматизации производственных процессов. В сочетании с электронным усилителем и реле фотоэлемент является неотъемлемой частью автоматических устройств, которые, реагируя на световые сигналы, управляют работой различных промышленных и сельскохозяйственных установок и транспортных механизмов.

Весьма перспективным является практическое использование вентильных фотоэлементов в качестве генераторов электроэнергии. Батареи кремниевых фотоэлементов, получившие название солнечных батарей, успешно применяются на советских космических спутниках и кораблях для питания радиоаппаратуры. Для этого общая площадь фотоэлементов должна быть достаточно большой. Например, на космическом корабле «Союз-3» площадь поверхности солнечных батарей составляла около

Когда коэффициент полезного действия солнечных батарей будет повышен до 20-22%, они, несомненно, приобретут первостепенное значение среди источников, вырабатывающих электроэнергию для производственных и бытовых нужд.

Законы внешнего фотоэффекта

Наряду с тепловым излучением, явлением которое не укладывается в рамки классической физики, является фотоэффект.

Внешним фотоэффектом называется явление испускания электронов веществом при облучении электромагнитными волнами.

Фотоэффект был открыт Герцем в 1887 году. Он заметил, что искра между цинковыми шариками облегчается, если облучить межискровой промежуток светом. Экспериментально закон внешнего фотоэффектом изучил Столетов в 1888 году. Схема для исследования фотоэффекта приведена на рис.1.

Рис.1.

Катод и анод располагается в вакуумной трубке, так как ничтожные загрязнения поверхности металла влияют на эмиссию электронов. Катод освещается монохроматическим светом через кварцевое окно (кварц, в отличие от обычного стекла, пропускает ультрафиолетовый свет). Напряжение между анодом и катодом регулируется потенциометром и измеряется вольтметром . Две аккумуляторные батареи и , включенные навстречу друг другу, позволяют с помощью потенциометра изменять значение и знак напряжения. Сила фототока измеряется гальванометром .

На рис.2. изображены кривые зависимости силы фототока от напряжения, соответствующие различным освещенностям катода и (). Частота света в обоих случаях одинакова.

где и - заряд и масса электрона.

По мере увеличения напряжения фототок возрастает, так как все большее число фотоэлектронов достигает анода. Максимальное значение фототока, называется фототоком насыщения. Он соответствует таким значениям напряжения, при которых все электроны, выбитые из катода, достигают анода: , где - число фотоэлектронов, вылетающих из катода за 1 секунду.

Столетов опытным путем установил следующие законы фотоэффекта:

При объяснении второго и третьего законов возникли серьезные трудности. Согласно электромагнитной теории, вырывание свободных электронов из металла должно явиться результатом их «раскачивания» в электрическом поле волны. Тогда не понятно, почему максимальная скорость вылетающих электронов зависит от частоты света, а не от амплитуды колебаний вектора напряженности электрического поля и связанной с ней интенсивностью волны. Трудности в истолковании второго и третьего законов фотоэффекта вызвали сомнения в универсальной применимости волновой теории света.

Уравнение Эйнштейна для фотоэффекта

В 1905 году Эйнштейн объяснил законы фотоэффекта с помощью предложенной им квантовой теории. Свет частотой не только излучается, как это предполагал Планк, но и поглощается веществом определенными порциями (квантами). Свет это поток дискретных световых квантов (фотонов), движущихся со скоростью света. Энергия кванта равна . Каждый квант поглощается только одним электроном. Поэтому число вырванных электронов должно быть пропорционально интенсивности света (1 закон фотоэффекта).

Энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии:

(2)

Уравнение (2) называется уравнением Эйнштейна для внешнего фотоэффекта. Уравнение Эйнштейна позволяет объяснить второй и третий законы фотоэффекта. Из уравнения (2) непосредственно следует, что максимальная кинетическая энергия возрастает с увеличением частоты падающего света. С уменьшением частоты кинетическая энергия уменьшается и при некоторой частоте она становиться равной нулю и фотоэффект прекращается (). Отсюда

где - число поглощенных фотонов.

При этом красная граница фотоэффекта сдвигается в сторону меньших частот:

. (5)

Кроме внешнего фотоэффекта известен еще и внутренний фотоэффект. При облучении твердых и жидких полупроводников и диэлектриков электроны из связанного состояния переходят в свободное, но при этом не вылетают наружу. Наличие свободных электронов приводит к возникновению фотопроводимости. Фотопроводимость это увеличение электропроводности вещества под действием света.

Фотон и его свойства

Явления интерференции, дифракции, поляризации можно объяснить только волновыми свойствами света. Однако фотоэффект и тепловое излучение – только корпускулярными (считая свет потоком фотонов). Волновое и квантовое описание свойств света дополняют друг друга. Свет одновременно волна и частица. Основные уравнения, устанавливающие связь между волновыми и корпускулярными свойствами следующие:

(7)

И - величины характеризующие частицу, и - волну.

Массу фотона найдем из соотношения (6): .

Фотон – это частица, которая всегда движется со скоростью света и имеет массу покоя равную нулю. Импульс фотона равен: .

Эффект Комптона

Наиболее полно корпускулярные свойства проявляются в эффекте Комптона. В 1923 году американский физик Комптон исследовал рассеяние рентгеновских лучей на парафине, атомы которого легкие.

Рассеяние рентгеновских лучей с волновой точки зрения связано вынужденными колебаниями электронов вещества, так что частота рассеянного света должна совпадать с частотой падающего света. Однако в рассеянном свете обнаружилась большая длина волны . не зависит от длины волны рассеиваемых рентгеновских лучей и от материала рассеивающего вещества, но зависит от направления рассеивания. Пусть - угол между направлением первичного пучка и направлением рассеянного света, тогда , где ( м).

Этот закон верен для легких атомов ( , , , ) имеющих электроны, слабо связанные с ядром. Процесс рассеяния можно объяснить упругим столкновением фотонов с электронами. Под действием рентгеновских лучей электроны легко отделяются от атома. Поэтому можно рассматривать рассеяние свободными электронами. Фотон, имеющий импульс , сталкивается с покоящимся электроном и отдает ему часть энергии, а сам приобретает импульс (рис.3).

Рис.3.

Используя законы сохранения энергии и импульса для абсолютно упругого удара, получим для выражение: , которое совпадает с экспериментальным, при этом , что и доказывает корпускулярную теорию света.

Люминесценция, фотолюминесценция и ее основные закономерности

Люминесценция – это неравновесное излучение, избыточное при данной температуре над тепловым излучением. Люминесценция возникает под действием внешних воздействий, не обусловленных нагреванием тела. Это холодное свечение. В зависимости от способа возбуждения различают: фотолюминесценцию (под действием света), хемилюминесценцию (под действием химических реакций), катодолюминесценцию (под действием быстрых электронов) и электролюминесценцию (под действием электрического поля).

Люминесценция прекращающаяся сразу ( с) после исчезновения внешнего воздействия, называется флуоресценцией. Если люминесценция исчезает через с после окончания воздействия, то она называется фосфоресценцией.

Вещества, которые люминесцируют, называются люминофорами. К ним относятся соединения урана, редких земель, а также сопряженные системы, у которых чередуются связи , ароматические соединения: флуоресциин, бензол, нафталин, антрацен.

Фотолюминесценция подчиняется закону Стокса: частота возбуждающего света больше испускаемой частоты , где - часть поглощенной энергии, переходящей в тепловую.

Основной характеристикой люминесценции является квантовый выход равный отношению числа поглощенных квантов к числу излученных. Есть вещества, у которых квантовый выход близок к 1 (например, флуоресциин). У антрацена квантовый выход равен 0,27.

Явление люминесценции получило широкое применение на практике. Например, люминесцентный анализ – метод определения состава вещества по характерному его свечению. Метод очень чувствительный (примерно ), позволяет обнаруживать ничтожное количество примесей и применяется для точнейших исследований в области химии, биологии, медицины и пищевой промышленности.

Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов, применяются в электронно-оптических преобразователях. Используются для изготовления светящихся указателей различных приборов.

Физические принципы устройства приборов ночного видения

Основу прибора составляет электронно-оптический преобразователь (ЭОП), который преобразует невидимое глазом изображение объекта в ИК лучах в видимое изображение (рис.4).

Рис.4.

1 – фотокатод, 2 – электронная линза, 3 – люминесцирующий экран,

Инфракрасное излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причем величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются электронной линзой и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта.

5. . 6. .

В 1900 г. немецкий физик Макс Планк высказал гипотезу: свет излучается и поглощается отдельными порциями - квантами (или фотонами). Энергия каждого фотона определяется формулой , где - постоянная Планка, равная , - частота света. Гипотеза Планка объяснила многие явления: в частности, явление фотоэффекта, открытого и 1887 г. немецким ученым Генрихом Герцем и изученного экспириментально русским ученым Александром Григорьевичем Столетовым.

Фотоэффект - это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится.

В результате исследований были установлены следующие эмпирические закономерности:

Количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

Максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

Во-первых, безынерционность фотоэффекта: процесс начинается сразу в момент начала освещения.

Во-вторых, наличие характерной для каждого металла минимальной частоты - красной границы фотоэффекта . Эта частота такова, что при фотоэффект не происходит при любой энергии света а если , то фотоэффект начинается даже при малой энергии.

Теорию фотоэффекта создал немецкий ученый А. Эйнштейн в 1905 г. В основе теории Эйнштейна лежит понятие работы выхода электронов из металла и понятие о квантовом излучении света. По теории Эйнштейна фотоэффект имеет следующее объяснение: поглощая квант света, электрон приобретает энергии . При вылете из металла энергия каждого электро на уменьшается на определенную величину, котору называют работой выхода (). Работа выхода это работа, которую необходимо затратить, чтобы удалить электрон из металла. Поэтому максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно,

.

Это уравнение носит название уравнения Эйнштейна .

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Простейшим таким прибором является вакуумный фотоэлемент. Недостатками такого фотоэлемента являются слабый ток, малая чувствительность к длинноволновому излучению, сложность в изготовлении, невозможность использования в цепях переменного тока. Применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.

Существуют полупроводниковые фотоэлементы, и которых под действием света происходит изменение концентрации носителей тока. Они используются при автоматическом управлении электрическими цепями (например, в турникетах метро), в цепях переменного тока, в качестве невозобновляемых источников тока в часах, микрокалькуляторах, проходят испытания первые солнечные автомобили, используются в солнечных батареях на искусственных спутниках Земли, межпланетных и орбитальных автоматических станциях.

С явлением фотоэффекта связаны фотохимические процессы, протекающие под действием света в фотографических материалах.