Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными (p может быть равно n ) вида

Неизвестные переменные, - коэффициенты (некоторые действительные или комплексные числа), - свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной .

В матричной форме записи эта система уравнений имеет вид ,
где - основная матрица системы, - матрица-столбец неизвестных переменных, - матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество .

Если система уравнений имеет хотя бы одно решение, то она называется совместной .

Если система уравнений решений не имеет, то она называется несовместной .

Если СЛАУ имеет единственное решение, то ее называют определенной ; если решений больше одного, то – неопределенной .

Если свободные члены всех уравнений системы равны нулю , то система называется однородной , в противном случае – неоднородной .

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными . Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

Пример.

Методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель (при необходимости смотрите статью ):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам :

Ответ:

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Пример.

Решите систему линейных уравнений матричным методом.

Решение.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как .

Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью ):

Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов (при необходимости смотрите статью ):

Ответ:

или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находится x n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Пример.

Решите систему линейных уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x 3 :

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Ответ:

X 1 = 4, x 2 = 0, x 3 = -1 .

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли :
для того, чтобы система из p уравнений с n неизвестными (p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения.

Решение.

. Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, Rang(A) , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

Система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным .

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

    Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

    Пример.

    .

    Решение.

    Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю

    а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

    В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

    Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

    Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

    Ответ:

    x 1 = 1, x 2 = 2 .

    Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

    Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными .

    Неизвестные переменные (их n - r штук), которые оказались в правых частях, называются свободными .

    Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

    Разберем на примере.

    Пример.

    Решите систему линейных алгебраических уравнений .

    Решение.

    Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем a 1 1 = 1 . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

    Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

    Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

    Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

    Для наглядности покажем элементы, образующие базисный минор:

    Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

    Придадим свободным неизвестным переменным x 2 и x 5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид

    Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

    Следовательно, .

    В ответе не забываем указать свободные неизвестные переменные.

    Ответ:

    Где - произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Смотрите его подробное описание и разобранные примеры в статье метод Гаусса для решения систем линейных алгебраических уравнений общего вида .

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность (n – r) линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами С 1 , С 2 , …, С (n-r) , то есть, .

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула задает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных С 1 , С 2 , …, С (n-r) , по формуле мы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как .

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) - первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде .

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где - общее решение соответствующей однородной системы, а - частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Пример.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений .

Решение.

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент a 1 1 = 9 основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем . Отметим для наглядности элементы системы, которые его образуют:

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения x 2 = 1, x 4 = 0 , тогда основные неизвестные найдем из системы уравнений
.

Пусть даны два неравенства f 1(x ) > g 1(x ) и f 2(x ) > g 2(x ). Система неравенств представляет собой конъюнкцию этих неравенств . Записывают систему так:


Решением этой системы х , которое обращает каждое из неравенств в истинное числовое неравенство. Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих данную систему.


Неравенство |x | < a , где а > 0, равносильно системе или двойному неравенству --а < x < a .


Совокупность неравенств f 1(x ) > g 1(x ) и f 2(x ) > g 2(x ) представляет собой дизъюнкцию этих неравенств .


Записывают совокупность так:


Решением этой совокупности является всякое значение переменной х , которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности. Множество решений совокупности есть объединение множеств решений неравенств, образующих совокупность.


Неравенство |x | > а , где а > 0, равносильно совокупности


Задача. Найти множество решений системы неравенств:


Решение. Найдем множества решений каждого из неравенств системы, а затем - их пересечение. Преобразуем каждое из неравенств к виду x > a или x < a .


Û Û


Û Û Û


х > -7 есть числовой промежуток (-7; ¥), а множество решений неравенства х < 7 - промежуток (-¥; 7). Найдем их пересечение: (-7; ¥) Ç (-¥; 7) = (-7; 7). Таким образом, множеством решений данной системы является промежуток (-7; 7).


Задача. Решить неравенство |x + 3| £ 4.


Решение. Данное неравенство равносильно двойному неравенству -4 £ x + 3 £ 4. Решая его, находим, что -7 £ x £ 1, т.е х Î [-7; 1].


Задача. Найти множество решений совокупности


Решение. Найдем сначала множества решений каждого из неравенств совокупности, а затем их объединение.


Преобразуем каждое из неравенств совокупности, заменяя его равносильным: Û Û Û


Множество решений неравенства х > 2 есть числовой промежуток (2; ¥), а множество решений неравенства х > 1 - промежуток (1; ¥). Найдем их объединение: (2; ¥) È (1; ¥) = (1; ¥). Следовательно, множество решений совокупности есть числовой промежуток (1; ¥).


Задача. Решить неравенство |x + 3| > 5.


Решение. Данное неравенство равносильно совокупности неравенств:



Таким образом, решением полученной совокупности является числовой промежуток (-¥; -8) È (2; ¥).


Упражнения для самостоятельной работы


1. Найдите множества истинности следующих конъюнкций неравенств и изобразите их на числовой прямой:


а) (х > 3) Ù (х > 5); г) (х ³ -7) Ù (х ³ -9);


б) (х < 3) Ù (х < 5); д) (х > 4) Ù (х £ -2);


в) (х ³ -4) Ù (х £ -2); е) (х ³ -6) Ù (х < 11).


2. Решите системы неравенств:


а) б)


в) г)


3. Найдите множества решений неравенств:


а) |x - 6| < 13; в) |3x - 6| £ 0;


б) |5 - 2x | £ 3; г) |3x - 8| < - 1.


4. Найдите множества истинности следующих дизъюнкций неравенств:


а) (х > -9) Ú (х > 1) Ú (х > 6); г) (х < 2) Ú (х > 8);

Решить систему уравнений – значит найти множество её решений. А решением системы двух уравнений с двумя переменными является пара значений переменных, обращающая каждое уравнение системы в верное числовое равенство. Системы уравнений с двумя переменными можно решать а) графически; б) способом подстановки; в) способом сложения. Выбор способа решения зависит от уравнений, входящих в систему. Графический способ применим к решению любой системы, но с помощью графиков уравнений можно приближенно находить решения системы. Лишь некоторые найденные решения системы могут оказаться точными. В этом можно убедиться, подставив их координаты в уравнения системы. Способ подстановки «хорош» при решении систем, когда одно из уравнений является уравнением первой степени. Способом сложения лучше пользоваться в случае, когда оба уравнения системы есть уравнения второй степени.


Пример1. С помощью графиков решим систему уравнений: (x – 3) 2 + (y – 4) 2 = 4, Решение. y – x 2 = 0. На геометрическом языке решить систему уравнений – значит найти все общие точки графиков уравнений, входящих в систему. Поэтому выясним, что является графиком каждого из уравнений данной системы. Итак, графиком уравнения (x – 3) 2 + (y – 4) 2 = 4 является окружность радиуса 2 с центром в точке с координатами (3; 4). Графиком уравнения y – x 2 = 0 является парабола y = x 2, ветви которой направлены вверх, а вершина расположена в точке с координатами (0;0). Изобразим графики уравнений в одной системе координат и найдём координаты точек пересечения, это и есть решения системы. Ответ: x 1 1,7, y 1 2,5; x 2 2,4, y 2 5,9.


Пример2. Решим систему уравнений способом подстановки: 0,5x 2 - y = 2, y - x = 2. Решение. 1) Выразим из второго уравнения системы y через x, получим уравнение: y = x) В первое уравнение системы вместо y подставим выражение (x + 2), получим уравнение: 0,5x 2 - (x + 2) = 2, решим его. 0,5x 2 - x - 2 = 2, 0,5x 2 - x = 0, 0,5x 2 - x - 4 = 0. Домножив обе части уравнения на 2, получим уравнение равносильное предыдущим: x x - 8= 0. Используя теорему, обратную Виета, находим корни квадратного уравнения – ими являются числа -2 и 4. 3) Если x = -2, то y = x + 2 = = 0. Если x = 4, то y = x + 2 = = 6. Ответ: { (-2; 0), (4; 6) }


Пример3. Решим систему уравнений способом сложения: x 2 - 2xy – 3 = 0, 2x 2 + 3xy – 27 = 0. Решение. 1) Первое уравнение системы умножим на 3, а второе – на 2. Получим систему, равносильную данной: 3x 2 - 6xy – 9 = 0, 4x 2 + 6xy – 54 = 0. 2) Сложив уравнения системы, получим уравнение с одной переменной: 7x 2 – 63 = 0, 7x 2 = 63, x 2 = 63: 7, x = ± 3. 3) Подставим найденные значения х в первое уравнение системы: если х = - 3, то (- 3) 2 – 2*(- 3)*y – 3 = 0, отсюда у = - 1; если х = 3, то 3 2 – 2*3*y – 3 = 0, отсюда у = 1. Ответ: { (- 3; - 1), (3; 1) }.


Решите графически системы уравнений: 1) ху + 3 = 0, 2) у =, у = x ху - 8 = 0. Ответ (по щелчку) (- 1; 3) (4; 2)




П о д с к а з к и Система 1). Если во втором уравнении системы слагаемое «- 2ху» перенести в левую часть, то там получим квадрат суммы (х + у) 2. В первом уравнении системы выразим х через у и подставим получившееся выражение во второе преобразованное уравнение; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (2; - 5), (5; - 2) }. Система 2). Если во втором уравнении системы раскроем скобки, слагаемое «ху» заменим значением «-8» и приведем подобные слагаемые, а затем разделим обе части уравнения на «2», то сможем выразить х через у. Подставив полученное выражение х через у в первое уравнение системы, получим квадратное уравнение относительно у; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (- 2; 4), (8; - 1) }. Система 3). Если из первого уравнения системы выразим х через у и подставим во второе уравнение, то получим дробно-рациональное уравнение относительно у; решив его, найдем значения у. Найдя значение у, найдем соответствующие значения х. Ответ: { (3; 1), (- 1; - 3) }. Далее ознакомьтесь с графическим способом решения систем

Продолжаем разбираться с системами линейных уравнений. До сих пор мы рассматривали системы, которые имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом , методом Гаусса . Однако на практике широко распространены еще два случая, когда:

1) система несовместна (не имеет решений);

2) система имеет бесконечно много решений.

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Есть такая теорема, которая утверждает:«Если количество уравнений в системе меньше количества переменных , то система либо несовместна, либо имеет бесконечно много решений». И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). На левой верхней ступеньке нам нужно получить (+1) или (–1). Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Мы поступили так. К первой строке прибавляем третью строку, умноженную на (–1).

(2). Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую, умноженную на 5.

(3). После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную (–1) на второй ступеньке. Третью строку делим на (–3).



(4). К третьей строке прибавляем вторую строку. Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований:

. Ясно, что так быть не может.

Действительно, перепишем полученную матрицу

обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида, где λ – число, отличное от нуля, то система несовместна (не имеет решений).

Как записать концовку задания? Необходимо записать фразу:

«В результате элементарных преобразований получена строка вида , где λ 0 ». Ответ: «Система не имеет решений (несовместна)».

Обратите внимание, что в этом случае нет никакого обратного хода алгоритма Гаусса, решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Снова напоминаем, что Ваш ход решения может отличаться от нашего хода решения, метод Гаусса не задаёт однозначного алгоритма, о порядке действий и о самих действиях надо догадываться в каждом случае самостоятельно.

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где λ 0 . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица

.

Эта матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет необходимости, так как появилась строка вида , где λ 0 . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок студенту, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия. Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3:

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом и его универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1). Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на (–4). К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–1).

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: к четвертой строке прибавляем первую строку, умноженную на (–1) – именно так!

(2). Последние три строки пропорциональны, две из них можно удалить. Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки не лишним будет вторую строку умножить на (–1), а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них. В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки , где λ 0, тоже нет. Значит, это и есть третий оставшийся случай – система имеет бесконечно много решений.

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса. Для систем уравнений с бесконечным множеством решений появляются новые понятия: «базисные переменные» и «свободные переменные» . Сначала определим, какие переменные у нас являются базисными , а какие переменные - свободными . Не обязательно подробно разъяснять термины линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы . В данном примере базисными переменными являются x 1 и x 3 .

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: x 2 и x 4 – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные . Обратный ход алгоритма Гаусса традиционно работает снизу вверх. Из второго уравнения системы выражаем базисную переменную x 3:

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную x 1 через свободные переменные x 2 и x 4:

В итоге получилось то, что нужно – все базисные переменные (x 1 и x 3) выражены только через свободные переменные (x 2 и x 4):

Собственно, общее решение готово:

.

Как правильно записать общее решение? Прежде всего, свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные x 2 и x 4 следует записать на второй и четвертой позиции:

.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Из общего решения системы можно найти бесконечно много частных решений . Это очень просто. Свободными переменные x 2 и x 4 называют так, потому что им можно придавать любые конечные значения . Самыми популярными значениями являются нулевые значения, поскольку при этом частное решение получается проще всего.

Подставив (x 2 = 0; x 4 = 0) в общее решение, получим одно из частных решений:

, или – это частное решение, соответствующее свободным переменным при значениях (x 2 = 0; x 4 = 0).

Другой сладкой парочкой являются единицы, подставим (x 2 = 1 и x 4 = 1) в общее решение:

, т. е. (-1; 1; 1; 1) – еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений, так как свободным переменным мы можем придать любые значения.

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение (-1; 1; 1; 1) и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно. Поэтому, прежде всего, более основательна и надёжна проверка общего решения.

Как проверить полученное общее решение ?

Это несложно, но довольно требует длительных преобразований. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:

Получена правая часть исходного первого уравнения системы.

В левую часть второго уравнения системы:

Получена правая часть исходного второго уравнения системы.

И далее – в левые части третьего и четвертого уравнение системы. Эта проверка дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют именно проверку общего решения.

Пример 4:

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений.

Пример 5:

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение: Запишем расширенную матрицу системы и, с помощью элементарных преобразований, приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.

(2). К третьей строке прибавляем вторую строку, умноженную на (–5). К четвертой строке прибавляем вторую строку, умноженную на (–7).

(3). Третья и четвертая строки одинаковы, одну из них удаляем. Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.

Свободная переменная, которой не досталось ступеньки здесь всего одна: .

(4). Обратный ход. Выразим базисные переменные через свободную переменную:

Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :

, , ,

Рассмотрим первое уравнение и подставим в него найденные выражения и :

Таким образом, общее решение при одной свободной переменной x 4:

Еще раз, как оно получилось? Свободная переменная x 4 одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , , - тоже на своих местах.

Сразу выполним проверку общего решения.

Подставляем базисные переменные , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, найдено верное общее решение.

Теперь из найденного общего решения получим два частных решения. Все переменные выражаются здесь через единственную свободную переменную x 4 . Ломать голову не нужно.

Пусть x 4 = 0, тогда – первое частное решение.

Пусть x 4 = 1, тогда – еще одно частное решение.

Ответ: Общее решение: . Частные решения:

и .

Пример 6:

Найти общее решение системы линейных уравнений.

Проверка общего решения у нас уже сделана, ответу можно доверять. Ваш ход решения может отличаться от нашего хода решения. Главное, чтобы совпали общие решения. Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановимся на особенностях решения, которые не встретились в прорешанных примерах. В общее решение системы иногда может входить константа (или константы).

Например, общее решение: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Однако метод Гаусса работает в самых суровых условиях. Следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Повторимся в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Решения и ответы:

Пример 2:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1) Первую и третью строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на (–6). К третьей строке прибавили первую строку, умноженную на (–7).

(3) К третьей строке прибавили вторую строку, умноженную на (–1).

В результате элементарных преобразований получена строка вида , где λ 0 . Значит, система несовместна. Ответ: решений нет.

Пример 4:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньки нет единицы , и преобразование (2) направлено на её получение.

(2). К третьей строке прибавили вторую строку, умноженную на –3.

(3). Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)

(4). К третьей строке прибавили вторую строку, умноженную на 3.

(5). У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход:

(1). Здесь – базисные переменные (которые на ступеньках), а – свободные переменные (кому не досталось ступеньки).

(2). Выразим базисные переменные через свободные переменные:

Из третьего уравнения: .

(3). Рассмотрим второе уравнение: , частные решения:

Ответ: Общее решение:

Комплексные числа

В этом разделе мы познакомимся с понятием комплексного числа , рассмотрим алгебраическую , тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять алгебраические действия с «обычными» числа, и помнить тригонометрию.

Сначала вспомним «обычные» Числа. В математике они называются множеством действительных чисел и обозначаются буквой R, либо R (утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой оси обязательно соответствует некоторое действительное число.

Если в задаче меньше трех переменных, это не задача; если больше восьми – она неразрешима. Энон.

Задачи с параметрами встречаются во всех вариантах ЕГЭ, поскольку при их решении наиболее ярко выявляется, насколько глубоки и неформальны знания выпускника. Трудности, возникающие у учащихся при выполнении подобных заданий, вызваны не только относительной их сложностью, но и тем, что в учебных пособиях им уделяется недостаточно внимания. В вариантах КИМов по математике встречается два типа заданий с параметрами. Первый: «для каждого значения параметра решить уравнение, неравенство или систему». Второй: «найти все значения параметра, при каждом из которых решения неравенства, уравнения или системы удовлетворяют заданным условиям». Соответственно и ответы в задачах этих двух типов различаются по существу. В первом случае в ответе перечисляются все возможные значения параметра и для каждого из этих значений записываются решения уравнения. Во втором – перечисляются все значения параметра, при которых выполнены условия задачи. Запись ответа является существенным этапом решения, очень важно не забыть отразить все этапы решения в ответе. На это необходимо обращать внимание учащихся.
В приложении к уроку приведен дополнительный материал по теме «Решение систем линейных уравнений с параметрами», который поможет при подготовке учащихся к итоговой аттестации.

Цели урока:

  • систематизация знаний учащихся;
  • выработка умений применять графические представления при решении систем уравнений;
  • формирование умения решать системы линейных уравнений, содержащих параметры;
  • осуществление оперативного контроля и самоконтроля учащихся;
  • развитие исследовательской и познавательной деятельности школьников, умения оценивать полученные результаты.

Урок рассчитан на два учебных часа.

Ход урока

  1. Организационный момент

Сообщение темы, целей и задач урока.

  1. Актуализация опорных знаний учащихся

Проверка домашней работы. В качестве домашнего задания учащимся было предложено решить каждую из трех систем линейных уравнений

а) б) в)

графически и аналитически; сделать вывод о количестве полученных решений для каждого случая

Заслушиваются и анализируются выводы, сделанные учащимися. Результаты работы под руководством учителя в краткой форме оформляются в тетрадях.

В общем виде систему двух линейных уравнений с двумя неизвестными можно представить в виде: .

Решить данную систему уравнений графически – значит найти координаты точек пересечения графиков данных уравнений или доказать, что таковых нет. Графиком каждого уравнения этой системы на плоскости является некоторая прямая.

Возможны три случая взаимного расположения двух прямых на плоскости:

<Рисунок1>;

<Рисунок2>;

<Рисунок3>.

К каждому случаю полезно выполнить рисунок.

  1. Изучение нового материала

Сегодня на уроке мы научимся решать системы линейных уравнений, содержащие параметры. Параметром будем называть независимую переменную, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству. Решить систему уравнений с параметром – значит установить соответствие, позволяющее для любого значения параметра найти соответствующее множество решений системы.

Решение задачи с параметром зависит от вопроса, поставленного в ней. Если нужно просто решить систему уравнений при различных значениях параметра или исследовать ее, то необходимо дать обоснованный ответ для любого значения параметра или для значения параметра, принадлежащего заранее оговоренному в задаче множеству. Если же необходимо найти значения параметра, удовлетворяющие определенным условиям, то полного исследования не требуется, и решение системы ограничивается нахождением именно этих конкретных значений параметра.

Пример 1. Для каждого значения параметра решим систему уравнений

Решение.

  1. Система имеет единственное решение, если

В этом случае имеем

  1. Если а = 0, то система принимает вид

Система несовместна, т.е. решений не имеет.

  1. Если то система запишется в виде

Очевидно, что в этом случае система имеет бесконечно много решений вида x = t; где t-любое действительное число.

Ответ:

Пример 2.

  • имеет единственное решение;
  • имеет множество решений;
  • не имеет решений?

Решение.

Ответ:

Пример 3. Найдем сумму параметров a и b, при которых система

имеет бесчисленное множество решений.

Решение. Система имеет бесчисленное множество решений, если

То есть если a = 12, b = 36; a + b = 12 + 36 =48.

Ответ: 48.

  1. Закрепление изученного в ходе решения задач
  1. № 15.24(а) . Для каждого значения параметра решите систему уравнений

  1. № 15.25(а) Для каждого значения параметра решите систему уравнений

  1. При каких значениях параметра a система уравнений

а) не имеет решений; б) имеет бесконечно много решений.

Ответ: при а = 2 решений нет, при а = -2 бесконечное множество решений

  1. Практическая работа в группах

Класс разбивается на группы по 4-5 человек. В каждую группу входят учащиеся с разным уровнем математической подготовки. Каждая группа получает карточку с заданием. Можно предложить всем группам решить одну систему уравнений, а решение оформить. Группа, первой верно выполнившая задание, представляет свое решение; остальные сдают решение учителю.

Карточка. Решите систему линейных уравнений

при всех значениях параметра а.

Ответ: при система имеет единственное решение ; при нет решений; при а = -1бесконечно много решений вида, (t; 1- t) где t R

Если класс сильный, группам могут быть предложены разные системы уравнений, перечень которых находится в Приложении1 . Тогда каждая группа представляет классу свое решение.

Отчет группы, первой верно выполнившей задание

Участники озвучивают и поясняют свой вариант решения и отвечают на вопросы, возникшие у представителей остальных групп.

  1. Самостоятельная работа

Вариант 1

Вариант 2

  1. Итоги урока

Решение систем линейных уравнений с параметрами можно сравнить с исследованием, которое включает в себя три основных условия. Учитель предлагает учащимся их сформулировать.

При решении следует помнить:

  1. для того, чтобы система имела единственное решение, нужно, чтобы прямые, отвечающие уравнению системы, пересекались, т.е. необходимо выполнение условия;
  2. чтобы не имела решений, нужно, чтобы прямые были параллельны, т.е. выполнялось условие,
  3. и, наконец, чтобы система имела бесконечно много решений, прямые должны совпадать, т.е. выполнялось условие.

Учитель оценивает работу на уроке класса в целом и выставляет отметки за урок отдельным учащимся. После проверки самостоятельной работы оценку за урок получит каждый ученик.

  1. Домашнее задание

При каких значениях параметра b система уравнений

  • имеет бесконечно много решений;
  • не имеет решений?

Графики функций y = 4x + b и y = kx + 6 симметричны относительно оси ординат.

  • Найдите b и k,
  • найдите координаты точки пересечения этих графиков.

Решите систему уравнений при всех значениях m и n.

Решите систему линейных уравнений при всех значениях параметра а (любую на выбор).

Литература

  1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений: базовый и профил. уровни / С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – М. : Просвещение, 2008.
  2. Математика: 9 класс: Подготовка к государственной итоговой аттестации / М. Н. Корчагина, В. В. Корчагин – М. : Эксмо, 2008.
  3. Готовимся в вуз. Математика. Часть 2. Учебное пособие для подготовки к ЕГЭ, участию в централизованном тестировании и сдаче вступительных испытаний в КубГТУ / Кубан. гос. технол. ун-т; Ин-т совр. технол. и экон.; Сост.: С. Н. Горшкова, Л. М. Данович, Н.А. Наумова, А.В. Мартыненко, И.А. Пальщикова. – Краснодар, 2006.
  4. Сборник задач по математике для подготовительных курсов ТУСУР: Учебное пособие / З. М. Гольдштейн, Г. А. Корниевская, Г. А. Коротченко, С.Н. Кудинова. – Томск: Томск. Гос. ун-т систем управления и радиоэлектроники, 1998.
  5. Математика: интенсивный курс подготовки к экзамену/ О. Ю. Черкасов, А.Г.Якушев. – М.: Рольф, Айрис-пресс, 1998.