Астрофизики засняли очень быстро угасающее излучение пульсаров после мощных вспышек - переход в так называемый режим пропеллера. Теоретически предсказанное более сорока лет тому назад явление было впервые достоверно зарегистрировано.

Интернациональная команда астрофизиков, в которую входили российские учёные из Института космических исследований РАН, МФТИ и Пулковской обсерватории РАН, засняла очень быстро угасающее излучение пульсаров после мощных вспышек - переход в так называемый режим пропеллера. Теоретические предсказания этого эффекта были сделаны более сорока лет тому назад, но только сейчас это явление было впервые достоверно зарегистрировано для пульсаров 4U 0115+63 и V 0332+53, излучающих в рентгеновском диапазоне. Результаты измерений, расчёты и выводы опубликованы в журнале Astronomy & Astrophysics.

Пульсары 4U 0115+63 и V 0332+53 принадлежат к особому типу источников - вспыхивающим (или транзиентным) рентгеновским пульсарам. Они то слабо светятся в рентгеновском диапазоне, то ярко вспыхивают, а то и совсем пропадают. По тому, как пульсары переходят из одного состояния в другое, можно судить об их магнитных полях и температурах окружающего вещества. Значения этих параметров столь высоки, что их невозможно получить и измерить напрямую в земных лабораториях.

Название пульсара начинается с буквы, которая обозначает первую нашедшую его обсерваторию, а затем идут цифры - координаты пульсара. «V» - это спутник Vela 5B, военный американский спутник, предназначенный для слежения за территорией СССР. «4U», в свою очередь, расшифровывается, как «4-й каталог UHURU», первой специализированной рентгеновской обсерватории на орбите. А когда открыли первый пульсар, его изначально назвали LGM-1, от «little green men» («маленькие зелёные человечки»): он посылал радиоимпульсы через равные промежутки времени, и исследователи решили, что это может быть сигнал от разумных цивилизаций.

Рентгеновский пульсар представляет собой быстро вращающуюся нейтронную звезду с сильным магнитным полем. Нейтронная звезда может образовывать пару с обычной звездой и перетягивать на себя её газ - астрофизики называют это аккрецией. Газ спиралью закручивается вокруг нейтронной звезды, образуя аккреционный диск, и тормозится на границе магнитосферы нейтронной звезды. Вещество при этом немного проникает внутрь магнитосферы, «вмораживается» в неё и стекает по магнитным линиям к полюсам. Падая на магнитные полюса, оно разогревается до сотен миллионов градусов и излучает в рентгеновском диапазоне. Так как магнитная ось нейтронной звезды находится под углом к оси вращения, рентгеновские лучи вращаются подобно лучам маяка и «с берега» выглядят как повторяющиеся сигналы с периодом от тысячных долей секунды до нескольких минут.

Нейтронная звезда - один из возможных остатков от вспышки сверхновой звезды. В конце эволюции некоторых звёзд их вещество из-за гравитации сжимается настолько сильно, что электроны фактически сливаются с протонами и образуют нейтроны. Магнитное поле нейтронной звезды может превышать максимально достижимое на Земле в десятки миллиардов раз.


Чтобы в системе из двух звёзд наблюдался рентгеновский пульсар, материя должна перетекать с обычной звезды на нейтронную. Обычная звезда при этом может быть гигантом или сверхгигантом и обладать мощным звёздным ветром, то есть выбрасывать в космос много вещества. Или это может быть небольшая звезда наподобие Солнца, которая заполнила свою полость Роша - область, за границей которой вещество уже не удерживается силой притяжения этой звезды и перетягивается гравитацией нейтронной звезды.

Рентгеновские пульсары 4U 0115+63 и V 0332+53 излучают так нестабильно (т. е. демонстрируют вспышки излучения), потому что у каждого из них довольно необычная звезда-компаньон - звезда класса Ве. Ве-звезда вращается вокруг своей оси настолько быстро, что время от времени у неё «поднимается юбка» - вдоль экватора образуется и растёт газовый диск - и звезда заполняет полость Роша. Газ начинает стремительно аккрецировать на нейтронную звезду, интенсивность её излучения резко возрастает, происходит вспышка. Постепенно «юбка» изнашивается, аккреционный диск истощается, и вещество уже не может падать на нейтронную звезду из-за влияния магнитного поля и центробежных сил. Возникает так называемый «эффект пропеллера». В таком режиме аккреция не происходит и рентгеновский источник пропадает.


В астрономии используется термин «светимость», то есть полная энергия, излучаемая небесным телом в единицу времени. Пороговая светимость для источника 4U 0115+63 показана красной линией. Для другого источника (V 0332+53) наблюдается аналогичная картина. Там, где проведены синие линии, расстояние между пульсаром и оптической звездой минимально. В таком положении режим аккреции может временно возобновляться при наличии достаточного количества вещества, что хорошо видно на рисунке.

С рентгеновского телескопа на космической обсерватории Swift российские учёные смогли измерить пороговую интенсивность излучения, то есть, светимость, ниже которой пульсар переходит в «режим пропеллера». Эта величина зависит от магнитного поля и от периода вращения пульсара. Период вращения исследуемых источников известен по измерению времени прихода излучаемых ими импульсов - 3,6 сек для 4U 0115+63 и 4,3 сек для V 0332+53, что позволило рассчитать напряжённость магнитного поля. Результаты совпали со значениями, полученными другими методами. Однако светимость пульсаров упала не в 400 раз, как ожидалось, а всего лишь в 200 раз. Авторы предположили, что либо нагретая вспышкой поверхность нейтронной звезды охлаждается и тем самым служит дополнительным источником излучения, либо эффект пропеллера не может полностью заблокировать перетекание вещества от обычной звезды и существуют другие каналы «утечки».

Переход в режим пропеллера является очень трудно уловимым, поскольку в этом режиме пульсар почти не излучает. Во время прошлых вспышек источников 4U 0115+63 и V 0332+53 уже была попытка поймать этот переход, но из-за низкой чувствительности доступных на тот момент приборов «выключенное состояние» засечь не удалось. Достоверное подтверждение тому, что эти пульсары действительно «выключаются», получено только сейчас. Более того, показано, что информация о переходе в «режим пропеллера» может быть использована для определения напряжённости и структуры магнитного поля нейтронных звёзд.

Александр Лутовинов, профессор РАН, доктор физико-математических наук, заведующий лабораторией в Институте космических исследований РАН и преподаватель МФТИ поясняет:

«Одним из фундаментальных вопросов образования и эволюции нейтронных звёзд является структура их магнитных полей. В процессе исследования мы определили для двух нейтронных звёзд дипольную составляющую магнитного поля, которая как раз отвечает за эффект пропеллера. Мы показали, что эту независимо полученную величину можно сравнить с величиной магнитного поля, уже известной по измерениям циклотронных линий, и таким образом оценить вклад других составляющих более высокого порядка, которые входят в структуру поля».

Это звезда, которая остается после катастрофического взрыва гигантской звезды.


Нейтронная звезда



Звезда средней величины, например Солнце, размерами в миллион раз превосходит такую планету, как Земля. Гигантские звезды в поперечнике в 10, а иногда и в 1000 раз больше Солнца. - это гигантская звезда, сжатая до размера крупного города.

Это обстоятельство и делает поведение нейтронной звезды очень странным. Каждая такая звезда равна по массе гигантской звезде, но эта масса стиснута в чрезвычайно малом объеме. Одна чайная ложка вещества нейтронной звезды весит миллиард тонн.

Вот как это происходит. После того как звезда взрывается, ее остатки сжимаются под действием гравитационных сил. Ученые называют этот процесс коллапсом звезды. По мере развития коллапса сила гравитации растет, а атомы вещества звезды все теснее и теснее прижимаются друг к другу. В нормальном состоянии атомы находятся на значительном расстоянии друг от друга, потому что электронные облака атомов взаимно отталкиваются. Но после взрыва гигантской звезды атомы так сильно прижаты и спрессованы, что электроны буквально впрессовываются в ядра атомов.

Ядро атома состоит из протонов и нейтронов. Электроны, втиснутые в ядро, реагируют с протонами, и в результате образуются нейтроны. С течением времени все вещество звезды становиться гигантским клубком спрессованных нейтронов. Рождается нейтронная звезда.

МОСКВА, 28 авг - РИА Новости. Ученые обнаружили рекордно тяжелую нейтронную звезду, масса которой в два раза превышает массу Солнца, что заставит их пересмотреть ряд теорий, в частности, теории, согласно которой внутри сверхплотного вещества нейтронных звезд могут присутствовать "свободные" кварки, говорится в статье, опубликованной в четверг в журнале Nature .

Нейтронная звезда представляет собой "труп" звезды, оставшийся после вспышки сверхновой. Ее размер не превышает размеров небольшого города, однако вещество по плотности в 10-15 раз выше плотности атомного ядра - "щепотка" вещества нейтронной звезды весит более 500 миллионов тонн.

Гравитация "вдавливает" электроны в протоны, превращая их в нейтроны, почему нейтронные звезды и получили такое название. До последнего времени ученые полагали, что масса нейтронной звезды не может превысить две солнечных, поскольку иначе гравитация "схлопнет" звезду в черную дыру. Состояние недр нейтронных звезд во многом является загадкой. Например, обсуждается присутствие "свободных" кварков и таких элементарных частиц, как K-мезоны и гипероны в центральных областях нейтронной звезды.

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.


Человека испокон веков манили звёзды. Современный учёные знают о небесных телах достаточно много – и об их типах, и о их строении. Но при этом астрофизики неуклонно выдвигают теории о существовании все новых разновидностей звезд, и зачастую их предположения подтверждаются. В нашем обзоре 10-ка самых невероятных звёзд, которые теоретически действительно могут существовать.

1. Кварковые звезды


Как известно, звезда в конце своей жизни может "схлопнуться" в черную дыру, в белого карлика или нейтронную звезду. Если звезда была достаточно плотной перед коллапсом в сверхновую, остаток звездной материи образует нейтронную звезду. Когда это происходит, звезда становится очень горячей и плотной, после чего пытается сколлапсироваться.

Этому, однако, мешают фермионы (в данном случае, нейтроны), которые подчиняются принципу Паули. Это означает, что нейтроны не могут быть сжаты до такого же квантового состояния и они отталкиваются от коллапсирующей материи, тем самым уравновешивая звездную материю в текущем состоянии. На протяжении десятилетий астрономы предполагали, что нейтронная звезда так и будет пребывать в равновесии.

Но, с развитием квантовой теории, астрофизики предположили возможность существования нового типа звезды, который образуется в случае прекращения дегенеративного давления нейтронного ядра. Назвали ее кварковой звездой. При увеличении давления массы звезды, нейтроны будут распадаться на свои составляющие - кварки, которые в условиях сильного давлениея и огромного количества энергии будут в состоянии существовать в свободном состоянии. Названный "странной материей", этот суп из кварков будет невероятно плотным, гораздо плотнее обычной нейтронной звезды.

2. Электрослабые звезды


Казалось бы, кварковые звезды - последний этап жизни звезды перед ее смертью и превращении в черную дыру. Однако, физики недавно предположили существование еще одного теоретического типа звезды, которая может существовать между кварковой звездой и черной дырой. Так называемая электрослабая звезда теоретически смогла поддерживать состояние равновесия благодаря сложным взаимодействиям между слабой ядерной силой и электромагнитной силой, известной как электрослабая сила.

В электрослабой звезде энергия от массы звезды давила бы на ядро звезды из "странной материи". При увеличении энергетического воздействия электромагнитная и слабая ядерная энергии "смешивались" бы, становясь практически неразличимыми. При таком уровне энергии кварки в ядре начали бы растворяться в лептонах, таких как электроны и нейтрино. Фактически большая часть "странной" материи превратилась бы в нейтрино, а высвобождающаяся энергия препятствовала бы коллапсу звезды.

3. Объекты Торна-Житковой


В 1977 году Кип Торн и Анна Житкова опубликовали свою работу, в которой было подробное описание нового типа звезды, названной "Объект Торна-Житковой". Это гибридная звезда, которая образуется в результате столкновения между красным сверхгигантом и небольшой, плотной нейтронной звездой. Поскольку красный сверхгигант является чрезвычайно огромной звездой, нейтронной звезде понадобятся сотни лет, чтобы просто пробиться через ее внутреннюю атмосферу.

По мере погружения нейтронной звезды в красного сверхгиганта, орбитальный центр (так называемый барицентр) двух звезд будет двигаться в направлении центра сверхгиганта. В конце концов, две звезды сольются, в результате чего возникнет большая сверхновая и, в конечном итоге, черная дыра.

4. Замороженные звезды


Стандартная звезда сжигает водородное топливо, создает гелий и поддерживает свое существование энергией и давлением, которые создаются во время этого процесса. Тем не менее, водород не вечен, и в конце концов звезда начнет сжигать более тяжелые элементы. К сожалению, энергия, высвобождающаяся при сгорании этих тяжелых элементов, не настолько обильна, как при сгорании водорода, и звезда начинает охлаждаться. Когда звезда в конечном счете становится сверхновой и взрывается, то она буквально "засеивает" вселенную молекулами металла, которые затем играют существенную роль в формировании новых звезд и планет.

Поскольку Вселенная становится все старше, все больше и больше звезд взрываются, а соответственно и в пространстве становится все больше металла. В прошлом в звездах почти не было металла, но со временем это количество все растет. В будущем, при старении Вселенной, будут образовываться новые и необычные виды металлических звезд, в том числе и гипотетические замороженные звезды, которые смогут поддерживать ядерный синтез при нулю градусов по Цельсию.

5. Магнитосферические вечно коллапсирующие объекты


С черными дырами связано непонятных явлений и парадоксов. Теоретики предположили существование различных звездообразных объектов. К примеру, в 2003 году ученые предположили, что черные дыры на самом деле не являются сингулярностями (как считалось ранее), а они - экзотический тип звезд, которые были названы "магнитосферический вечно коллапсирующий объект". Подобный объект якобы должен разрешить парадокс, при котором материя коллапсирующей черной дыры в конце концов начинает двигаться быстрее скорости света.

Изначально магнитосферический вечно коллапсирующий объект образуется, как обычная черная дыра - под воздействием гравитации материя начинает "схлопываться" внутрь звезды. Но энергия, возникающая при столкновении частиц, создает субатомное внешнее давление, которое противостоит давлению, вызванному синтезом в ядре звезды. Это позволяет подобному объекту оставаться относительно стабильным. Он никогда не достигнет горизонта событий и никогда полностью не разрушится.

6. Звезды III населения


Как прогнозируют ученые, ближе к закату Вселенной появятся холодные металлические звезды. Однако, а как же обстоят дела с звездами на другом конце спектра? Эти звезды, состоящие из первичного газа, оставшегося от Большого Взрыва, были названы звездами III населения. Схема населения звезд была разработана Вальтером Бааде в 1940 году, а в ней было описано содержание металла в звезде. Чем выше число "населения", тем в звезде выше содержание металла. Долгое время разделяли только два вида звезд (логически названные звездами населения I и II).

Однако, современные астрофизики начали серьезно исследовать тип звезд, которые должны были существовать сразу после Большого Взрыва. В них не было тяжелых элементов, а состояли они полностью из водорода и гелия, с возможными вкраплениями лития. Звезды III населения были абсурдно яркими и гигантскими, больше, чем большинство нынешних звезд. В ядрах не только синтезировались обычные элементы, они также питались от реакции аннигиляции темной материи.

Существование подобных звезд было очень недолгим, всего около двух миллионов лет. В конце концов, эти звезды сожгли весь свой водород и гелий, начали синтезировать более тяжелые металлические элементы и взорвались, рассеяв их по всей вселенной.

7. Квазизвезды


Не стоит путать квазизвезды с квазарами (объектом, который выглядит, как звезда, но на самом деле не является ей). Квазизвезда - теоретический тип звезды, которые мог бы существовать только на заре Вселенной. Как и объекты Торна-Житковой, они были бы "каннибалами", но вместо того, чтобы скрывать еще одну звезду в центре, там была бы черная дыра. Квазизвезды должны были образовываться из массивных звезд III населения.

При коллапсе обычных звезд они становятся сверхновыми и оставляют после себя черную дыру. В квазизвезде плотный внешний слой ядерного материала должен был впитать энергию взрыва от коллапса, которая бы не вышла за пределы сверхновой. Таким образом, внешняя оболочка звезды осталась бы нетронутой, в то время как внутри ее образовалась бы черная дыра. Равновесие существования такой звезды поддерживалось бы противостоянием энергии, излучаемой из ядра черной дыры, и энергии гравитационного коллапса.

8. Преонные звезды

Философы на протяжении веков вели прения относительно того, что является наименьшим возможным делением материи. Обнаружив протоны, нейтроны и электроны, ученые посчитали, что они нашли базовую структуру Вселенной. Однако, с ходом развития науки, были найдены более мелкие частицы, что заставило пересмотреть всю концепцию нашей Вселенной.

Гипотетически, деление может продолжаться вечно, но некоторые теоретики считают, что так называемые преоны являются наименьшими частицами в природе. Теоретически преонные звезды были бы величиной от горошины до футбольного мяча. В столь крошечном объеме содержалась бы масса примерно равная Луне. Существование преонных звезд могло бы дать разгадку огромного содержания во Вселенной так называемой темной материи.

9. Звезды Планка


Один из самых интересных вопросов о черных дыр - как же они выглядят изнутри. Часто центр черной дыры описывается как сингулярность с бесконечной плотностью и без пространственного измерения, но что это означает на самом деле? Современные теоретики предположили, что в центре черных дыр находятся так называемые звезды Планка. Якобы звезда Планка - очень странное явление, которое поддерживается обычным ядерным синтезом. Она была названа так, поскольку должна иметь плотность энергии близкую к планковской плотности (т. е. - 5,15 х 10^96 килограммов на кубический метр).

10. Пушистый клубок


Физики любят придумывать забавные названия для сложных концепций. "Пушистый клубок" - симпатичное название для смертельной области космоса, которая моментально убивает все рядом. Теория пушистого клубка - по сути попытка описать черную дыру, используя теорию струн. По существу, пушистый клубок не настоящая звезда в обычном понимании, это не шар плазмы, поддерживаемый термоядерным синтезом. Скорее, это область запутанных струн энергии, поддерживаемых их собственной внутренней энергией. Подобный объект попросту испарял бы любое вещество, приближающееся к нему.

Тем, кого интересует непознанное, интересно будет узнать и про .

Пульсары 4U 0115+63 и V 0332+53 принадлежат к особому типу источников — вспыхивающим (или транзиентным) рентгеновским пульсарам. Они то слабо светятся в рентгеновском диапазоне, то ярко вспыхивают, а то и совсем пропадают. По тому, как пульсары переходят из одного состояния в другое, можно судить об их магнитных полях и температурах окружающего вещества. Значения этих параметров столь высоки, что их невозможно получить и измерить напрямую в земных лабораториях.

Название пульсара начинается с буквы, которая обозначает первую нашедшую его обсерваторию, а затем идут цифры — координаты пульсара. «V» — это спутник Vela 5B, военный американский спутник, предназначенный для слежения за территорией СССР. «4U», в свою очередь, расшифровывается, как «4-й каталог UHURU», первой специализированной рентгеновской обсерватории на орбите. А когда открыли первый пульсар, его изначально назвали LGM-1, от «little green men» («маленькие зелёные человечки»): он посылал радиоимпульсы через равные промежутки времени, и исследователи решили, что это может быть сигнал от разумных цивилизаций.

Рентгеновский пульсар представляет собой быстро вращающуюся нейтронную звезду с сильным магнитным полем. Нейтронная звезда может образовывать пару с обычной звездой и перетягивать на себя её газ — астрофизики называют это аккрецией. Газ спиралью закручивается вокруг нейтронной звезды, образуя аккреционный диск, и тормозится на границе магнитосферы нейтронной звезды. Вещество при этом немного проникает внутрь магнитосферы, «вмораживается» в неё и стекает по магнитным линиям к полюсам. Падая на магнитные полюса, оно разогревается до сотен миллионов градусов и излучает в рентгеновском диапазоне. Так как магнитная ось нейтронной звезды находится под углом к оси вращения, рентгеновские лучи вращаются подобно лучам маяка и «с берега» выглядят как повторяющиеся сигналы с периодом от тысячных долей секунды до нескольких минут.

Нейтронная звезда — один из возможных остатков от вспышки сверхновой звезды. В конце эволюции некоторых звёзд их вещество из-за гравитации сжимается настолько сильно, что электроны фактически сливаются с протонами и образуют нейтроны. Магнитное поле нейтронной звезды может превышать максимально достижимое на Земле в десятки миллиардов раз.

Чтобы в системе из двух звёзд наблюдался рентгеновский пульсар, материя должна перетекать с обычной звезды на нейтронную. Обычная звезда при этом может быть гигантом или сверхгигантом и обладать мощным звёздным ветром, то есть выбрасывать в космос много вещества. Или это может быть небольшая звезда наподобие Солнца, которая заполнила свою полость Роша — область, за границей которой вещество уже не удерживается силой притяжения этой звезды и перетягивается гравитацией нейтронной звезды.

Рентгеновские пульсары 4U 0115+63 и V 0332+53 излучают так нестабильно (т. е. демонстрируют вспышки излучения), потому что у каждого из них довольно необычная звезда-компаньон — звезда класса Ве. Ве-звезда вращается вокруг своей оси настолько быстро, что время от времени у неё «поднимается юбка» — вдоль экватора образуется и растёт газовый диск — и звезда заполняет полость Роша. Газ начинает стремительно аккрецировать на нейтронную звезду, интенсивность её излучения резко возрастает, происходит вспышка. Постепенно «юбка» изнашивается, аккреционный диск истощается, и вещество уже не может падать на нейтронную звезду из-за влияния магнитного поля и центробежных сил. Возникает так называемый «эффект пропеллера». В таком режиме аккреция не происходит и рентгеновский источник пропадает.

С помощью рентгеновского телескопа на космической обсерватории Swift российские учёные смогли измерить пороговую интенсивность излучения, то есть, светимость, ниже которой пульсар переходит в «режим пропеллера». Эта величина зависит от магнитного поля и от периода вращения пульсара. Период вращения исследуемых источников известен по измерению времени прихода излучаемых ими импульсов — 3,6 сек для 4U 0115+63 и 4,3 сек для V 0332+53, что позволило рассчитать напряжённость магнитного поля. Результаты совпали со значениями, полученными другими методами. Однако светимость пульсаров упала не в 400 раз, как ожидалось, а всего лишь в 200 раз. Авторы предположили, что либо нагретая вспышкой поверхность нейтронной звезды охлаждается и тем самым служит дополнительным источником излучения, либо эффект пропеллера не может полностью заблокировать перетекание вещества от обычной звезды и существуют другие каналы «утечки».

Переход в режим пропеллера является очень трудно уловимым, поскольку в этом режиме пульсар почти не излучает. Во время прошлых вспышек источников 4U 0115+63 и V 0332+53 уже была попытка поймать этот переход, но из-за низкой чувствительности доступных на тот момент приборов «выключенное состояние» засечь не удалось. Достоверное подтверждение тому, что эти пульсары действительно «выключаются», получено только сейчас. Более того, показано, что информация о переходе в «режим пропеллера» может быть использована для определения напряжённости и структуры магнитного поля нейтронных звёзд.

Александр Лутовинов, профессор РАН, доктор физико-математических наук, заведующий лабораторией в Институте космических исследований РАН и преподаватель МФТИ поясняет: «Одним из фундаментальных вопросов образования и эволюции нейтронных звёзд является структура их магнитных полей. В процессе исследования мы определили для двух нейтронных звёзд дипольную составляющую магнитного поля, которая как раз отвечает за эффект пропеллера. Мы показали, что эту независимо полученную величину можно сравнить с величиной магнитного поля, уже известной по измерениям циклотронных линий, и таким образом оценить вклад других составляющих более высокого порядка, которые входят в структуру поля». Результаты измерений, расчёты и выводы опубликованы в журнале