Нервные клетки или нейроны представляют собой электрически возбудимые клетки, которые обрабатывают и передают информацию с помощью электрических импульсов. Такие сигналы передаются между нейронами через синапсы . Нейроны могут связываться друг с другом в нейронные сети. Нейроны являются основным материалом головного и спинного мозга центральной нервной системы человека, а также ганглий периферической нервной системы человека.

Нейроны бывают нескольких типов в зависимости от функций:

  • Сенсорные нейроны, реагирующие на такие раздражители как свет, звук, прикосновения, а также на другие стимулы, влияющие на клетки органов чувств.
  • Двигательные нейроны, посылающие сигналы к мышцам.
  • Интернейроны, соединяющие одни нейроны с другими в головном мозге, спинном мозге или в нейронных сетях.

Обычный нейрон состоит из тела клетки (сомы ), дендритов и аксона . Дендриты представляют собой тонкие структуры, идущие от тела клетки, они имеют многоразовое ветвление и размеры в несколько сотен микрометров. Аксон, который в миелизированном виде ещё называют нервным волокном, представляет собой специализированное клеточное расширение, берущее начало из тела клетки из места под названием аксоновый холмик (бугорок), распространяется на расстояние до одного метра. Часто нервные волокна связываются в пучки и в периферическую нервную систему, формируя нервные нити.

Содержащая ядро цитоплазматическая часть клетки называется телом клетки или сомой. Обычно, тело каждой клетки имеет размеры от 4 до 100 мкм в диаметре может быть различных форм: веретенообразной, грушевидной, пирамидальной, а также намного реже звездообразной формы. Тело нервной клетки содержит большое сферическое центральное ядро с множеством гранул Ниссля с цитоплазматической матрицей (нейроплазмой). Гранулы Ниссля содержат в себе рибонуклеопротеид и принимают участие в синтезе белка. Нейроплазма также содержит в себе митохондрии и тела Гольджи, меланин и липохромные пигментные гранулы. Количество данных клеточных органелл зависит от функциональных особенностей клетки. Следует отметить, что тело клетки существует с нефункциональной центросомой, что не даёт нейронам возможности делиться. Вот почему количество нейронов у взрослого человека равно количеству нейронов при рождении. По всей длине аксона и дендритов присутствуют хрупкие цитоплазматические нити, называемые нейрофибриллами, берущие своё начало от тела клетки. Тело клетки и её придаток окружены тонкой мембраной под названием нейронная мембрана. Описанные выше клеточные тела присутствуют в сером веществе головного и спинного мозга.

Короткие цитоплазматические придатки тела клетки, получающие импульсы от других нейронов называются дендритами. Дендриты проводят нервные импульсы в тело клетки. Дендриты имеют начальную толщину от 5 до 10 мкм, но постепенного их толщина уменьшается и они продолжаются обильным ветвлением. Дендриты получают импульс от аксона соседнего нейрона через синапс и проводят импульс к клеточному телу, поэтому их называют рецептивными органами.

Длинный цитоплазматический придаток клеточного тела, передающий импульс от тела клетки к соседнему нейрону называется аксон. Аксон значительно превышает размеры дендритов. Аксон берет своё начало в конической высоте тела клетки, называемым аксоновым холмиком, лишенным гранул Ниссля. Длина аксона является переменной и зависит от функционально связи нейрона. Цитоплазма аксона или аксоплазма содержит нейрофибриллы, митохондрии, но в ней нет гранул Ниссля. Мембрана, которая покрывает аксон имеет название аксолемма. Аксон может давать отростки, называемые добавочными вдоль своего направления, а ближе к концу аксон имеет интенсивное ветвление, заканчивающееся кистью, последняя его часть имеет увеличение для формирования бульбы. Аксоны присутствуют в белом веществе центральной и периферической нервной системы. Нервные волокна (аксоны) покрыты тонкой мембраной, которая богата липидами и называется миелиновой оболочкой. Миелиновая оболочка сформирована шванновскими клетками, которые покрывают нервные волокна. Часть аксона, не покрытая миелиновой оболочкой представляет собой узел смежных миелинизированных сегментов называемым узлом Ранвье. Функция аксона заключается в передаче импульса из клеточного тела одного нейрона в дендрон другого нейрона через синапс. Нейроны специально предназначены для передачи межклеточных сигналов. Разнообразие нейронов связано с выполняемыми ими функциями, размеры сомы нейронов варьируются от 4 до 100 мкм в диаметре. Ядро сомы имеет размеры от 3 до 18 мкм. Дендриты нейрона представляют собой клеточные придатки, образующие целые дендритные ветви.

Аксон является самой тонкой структурой нейрона, но его длина может превышать диаметр сомы в несколько сот и тысяч раз. Аксон несёт нервные сигналы от сомы. То место, где из сомы выходит аксон называется аксоновым холмиком. Длина аксонов может быть разной и достигает в некоторых участках организма длины более 1 метра (например от основания позвоночника до кончика пальца ноги).

Между аксонами и дендритами существуют некоторые структурные различия. Так, типичные аксоны практически никогда не содержат рибосомы, за исключением некоторых в начальном сегменте. Дендриты содержат гранулированный эндоплазматический ретикулум или рибосомы, уменьшающийся с удалением от тела клетки.

Мозг человека имеет очень огромное количество синапсов. Так, каждый из 100 миллиардов нейронов содержит в среднем 7 000 синаптических связей с другими нейронами. Установлено, что мозг трехлетнего ребёнка имеет около 1 квадриллиона синапсов. Количество этих синапсов уменьшается с возрастом и стабилизируется у взрослых. У взрослого количество синапсов составляет от 100 до 500 триллионов. Согласно исследованиям мозг человека содержит около 100 миллиардов нейронов и 100 триллионов синапсов.

Виды нейронов

Нейроны бывают нескольких форм и размеров и классифицируются по их морфологии функциям. Так например, анатом Камилло Гольджи разделял нейроны на две группы. К первой группе он отнёс нейроны с длинными аксонами, которые передают сигналы на длинные расстояния. Ко второй группе он относил нейроны с короткими аксонами, которые можно было спутать с дендритами.

Нейроны классифицируются по своему строению на следующие группы:

  • Однополярные . Аксон и дендриты выходят из одного придатка.
  • Биполярные . Аксон и одиночный дендрит располагаются на разных сторонах сомы.
  • Многополярные . Не менее двух дендритов располагаются отдельно от аксона.
  • Тип Гольджи I . Нейрон имеет длинный аксон.
  • Тип Гольджи II . Нейроны, у которых аксоны расположены локально.
  • Анаксонные нейроны . Когда аксон не отличим от дендритов.
  • Корзинные клетки - интернейроны, формирующие плотно сплетённые окончания по всей соме клеток-мишеней. Присутствуют в коре головного мозга и в мозжечке.
  • Клетки Беца . Представляют собой большие двигательные нейроны.
  • Клетки Люгаро - интернейроны мозжечка.
  • Средние остроконечные нейроны . Присутствуют в полосатом теле.
  • Клетки Пуркинье . Представляют собой крупные многополярные нейроны мозжечка типа Гольджи I.
  • Пирамидальные клетки . Нейроны с сомой треугольной формы типа Гольджи II.
  • Клетки Реншоу . Нейроны, с обеих концов связанные с альфа моторными нейронами.
  • Униполярный кистевидные клетки . Интернейроны, которые имеют уникальные дендритные окончания в виде кисти.
  • Клетки переднего роговидного отростка . Представляют собой мотонейроны, расположенные в спинном мозге.
  • Шпиндельные клетки . Интернейроны, соединяющие отдаленные области мозга.
  • Афферентные нейроны . Нейроны, которые передают сигналы от тканей и органов в центральную нервную систему.
  • Эфферентный нейроны . Нейроны, передающие сигналы от центральной нервной системы к эффекторным клеткам.
  • Интернейроны , подключающие нейроны в конкретных областях центральной нервной системы.

Действие нейронов

Все нейроны являются электрически возбудимыми и поддерживают напряжение на своих мембранах с помощью метаболически проводимых ионных насосов, сочетающихся с ионными каналами, которые встроены в мембрану для генерации ионных дифференциалов, таких как натрий, хлорид, кальций и калий. Изменения напряжения в кросс-мембране приводит к изменению функций вольт-зависимых ионных калом. При изменении напряжения в достаточно большом уровне электрохимический импульс вызывает генерацию активного потенциала, который быстро перемещается вдоль клеток аксона, активируя синаптические связи с другими клетками.

Большинство нервных клеток являются базовым типом. Определенный стимул вызывает электрический разряд в клетке, разряд подобный разряду конденсатора. Это продуцирует электрический импульсы равный примерно 50-70 милливольтам, который называется активным потенциалом. Электрический импульс распространяется по волокну, по аксонам. Скорость распространения импульса зависит от волокна, это примерно в среднем десятки метров в секунду, что заметно ниже скорости распространения электричества, которая равна скорости света. Как только импульс достигает пучка аксона, он передаётся на соседние нервные клетки под действием химического медиатора.

Нейрон действует на другие нейроны выпуская нейротрансмиттер, связывающийся с химическими рецепторами. Эффект от постсинаптического нейрона определяется не пресинаптическим нейроном или нейротрансмиттером, а типом активируемого рецептора. Нейротрансмиттер представляет собой как бы ключ, а рецептор замок. При этом один ключ может быть использован для открытия «замков» разного типа. Рецепторы в свою очередь классифицируются на возбуждающие (увеличивающие скорость передачи), ингибирующие (замедляющие скорость передачи) и модулирующие (вызывающие длительные эффекты).

Связь между нейронами осуществляется через синапсы, в этом месте находится окончание аксона (аксоновый терминал). Нейроны, такие например как клетки Пуркинье в мозжечке могут иметь более тысячи дендритных переходов, осуществляя связь с десятками тысяч других нейронов. Другие нейроны (крупные нейронные клетки супраоптического ядра) имеют лишь один или два дендрита, каждый из которых получает тысячи синапсов. Синапсы могут быть как возбуждающими так и ингибирующими. Некоторые нейроны связываются между собой посредством электрических синапсов, которые являются прямыми электрическими соединениями между клетками.

В химическом синапсе при достижении потенциалом действия аксона, происходит открытие напряжения в кальциевом канале, что позволяет ионам кальция проникнуть в терминал. Кальций заставляет синаптические пузырьки, наполненные молекулами нейромедиаторами проникать в мембрану, высвобождая содержимое в синаптическую щель. Происходит процесс диффундирования медиаторов через синаптическую щель, которые в свою очередь активируют рецепторы на постсинаптическом нейроне. Кроме того, высоко цитозольный кальций в терминале аксона вызывает усвоение митохондриального кальция, который в свою очередь активирует митохондриальный энергетический метаболизм для производства АТФ, что поддерживает непрерывную нейротрансмиссию.

"Нервные клетки не восстанавливаются", – привыкли мы слышать и повторять с давних пор. И это выражение вполне можно было бы занести в прописные истины. Тем не менее, на состоявшемся в 1970 году в США первом конгрессов по регенерации центральной нервной системы были сделаны сообщения, которые свидетельствовали: нервные клетки можно регенерировать и даже в более широких пределах, чем ученые думали ранее.

Прошло десять лет, и появились новые факты. Так, исследования, проведенные в медицинском институте штата Мэриленд, позволили установить, что нервные клетки головного и спинного мозга после их повреждения регенерируются в результате массового разрастания особых клеток, образующих на месте повреждения густое сплетение. Обнадеживающие результаты были получены, когда на поврежденные участки спинного мозга трансплантировались части периферических нервных клеток, а потом части нервной ткани пересаживались в дегенерировавшие участки . Правда, исследования проводятся пока на лабораторных животных, опыты на людях считаются рискованными. Если перерезать зрительный нерв у лягушки или рыбы, то он, как известно, нередко восстанавливается, сам находя для себя "правильную дорогу". "Руководящим фактором", вероятно, является некая химическая субстанция, открытая Ритой Леви-Монтальчини, которая стимулирует нервные клетки в росте в ганглиях симпатической нервной системы. Однако что-то вырабатывается и самими нейронами. Много лет назад нейробиолог Пауль Вайс установил, что внутри нервных клеток непрерывно движется вещество, причем скорость его движения бывает разной – от миллиметра до нескольких десятков сантиметров в сутки. Не связано ли это с процессом регенерации нервных клеток?

Нейрон - это структурно-функциональная единица нервной системы. Эти нервные клетки имеют сложное строение по структуре содержат ядро, тело клетки и отростки. В организме человека насчитывается более восьмидесяти пяти миллиардов нейронов.

Нервные клетки состоят из протоплазмы (цитоплазмы и ядра), снаружи ограничены мембраной из двойного слоя липидов (билипидный слой). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов, благодаря которым клетки воспринимают внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы. Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро и органеллы, а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки.

Аксон - обычно длинный отросток нервной клетки, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты - это короткие и сильно разветвлённые отростки нейрона, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов, и которые передают возбуждение к телу нервной клетки.

Основной структурно-функциональной единицей нервной системы является нейрон (нейроцит). От тела нейрона отходит в одну сторону один длинный отросток (аксон), в другую - короткие ветвящие отростки - дендриты.

По дендритам нервные импульсы притекают к телу нейрона (проведение импульса афферентно, целлюлопетально), от ее рецептивных областей. Аксон проводит импульсы афферентно (целлюлофугально) - от клеточного тела и дендритов.

При описании аксона и дендритов исходят из возможности проведения импульсов только в одном направлении - так называемый закон динамической поляризации нейрона (проявляется в нейронных цепях).

В окрашенных срезах нервной ткани аксон узнают по отсутствию в нем тигроидного вещества, тогда как в дендритах, по крайней мере в начальной их части, оно выявляется.

В зависимости от числа отростков, отходящих от тела клетки, различают 3 типа нейронов

  • униполярные (псевдоуниполярные)
  • биполярные
  • мультиполярные

В зависимости от формы различают

  • пирамидные клетки
  • веретенообразные клетки
  • корзинчатые клетки
  • звездчатые клетки (астроциты)

В зависимости от размеров различают от очень маленьких до гигантских клеток, например гигантские клетки Беца в двигательной зоне коры.

Большинство нейронов в ЦНС представлены биполярными клетками, имеющими один аксон и большое количество дихотомически разветвляющихся дендритов. Такие клетки характерны для зрительной, слуховой и обонятельной систем - специализированных сенсорных систем.

Значительно реже обнаруживаются униполярные (псевдоуниполярные) клетки. Они находятся в мезэнцефальном ядре тройничного нерва и в спинномозговых узлах (ганглии задних корешков и чувствительных черепных нервов). Эти клетки обеспечивают определенные виды чувствительности - болевую, температурную, тактильную, а также чувство давления, вибрации, стереогнозии и восприятия расстояния между местами двух точечных прикосновений к коже (двумерно-пространственное чувство). Такие клетки, хотя и называются униполярными, на самом деле имеют 2 отростка (аксон и дендрит), которые сливаются вблизи тела клетки.

Истинно униполярные клетки обнаружены только в мезэнцефальном ядре тройничного нерва, которое проводит проприоцептивные импульсы от жевательных мышц в клетки таламуса.

В зависимости от выполняемых функций различают нейроны

  • рецепторные (чувствительные, вегетативные)
  • эффекторные (двигательные, вегетативные)
  • сочетательные (ассоциативные)

Связь между нервными клетками осуществляется через синапсы [показать] , в работе которых участвуют передатчики возбуждения - медиаторы.

Синапс - соединение нервных клеток

Нервные клетки соединяются друг с другом только путем контакта - синапса (греч. synapsis - соприкосновение, схватывание, соединение). Синапсы можно классифицировать по их расположению на поверхности постсинаптического нейрона. Различают

  • аксодендритические синапсы - аксон оканчивается на дендрите;
  • аксосоматические синапсы - образуется контакт между аксоном и телом нейрона;
  • аксо-аксональные - контакт устанавливается между аксонами. В этом случае аксон может образовать синапс только на немиелинизированной части другого аксона. Это возможно или в проксимальной части аксона, или в области концевой пуговки аксона, так как в этих местах миелиновая оболочка отсутствует.
  • Имеются и другие варианты синапсов: дендро-дендритные и дендросоматические.

Примерно половина всей поверхности тела нейрона и почти вся поверхность его дендритов усеяны синаптическими контактами от других нейронов. Однако не все синапсы передают нервные импульсы. Некоторые из них тормозят реакции нейрона, с которым они связаны (тормозные синапсы), а другие, находящиеся на том же нейроне, возбуждают его (возбуждающие синапсы). Суммарное действие обоих видов синапсов на один нейрон приводит в каждый данный момент к балансу между двумя противоположными видами синаптических эффектов.

Возбуждающие и тормозные синапсы устроены одинаково. Их противоположное действие объясняется выделением в синаптических окончаниях разных химических нейромедиаторов, обладающих различной способностью изменять проницаемость синаптической мембраны для ионов калия, натрия и хлора. Кроме того, возбуждающие синапсы чаще образуют аксодендритные контакты, а тормозные - аксосоматические и аксо-аксональные.

Участок нейрона, по которому импульсы поступают в синапс, называется пресинаптическим окончанием, а участок, воспринимающий импульсы,- постсинаптическим окончанием. В цитоплазме пресинаптического окончания содержится много митохондрий и синаптических пузырьков, содержащих нейромедиатор. Аксолемма пресинаптического участка аксона, которая вплотную приближается к постсинаптическому нейрону, в синапсе образует пресинаптическую мембрану. Участок плазматической мембраны постсинаптического нейрона, тесно сближенный с пресинаптической мембраной, называется постсинаптической мембраной. Межклеточное пространство между пре- и постсинаптическими мембранами называется синаптической щелью.

Из цепи таких нейронов строятся рефлекторные дуги . В основе каждого рефлекса лежат восприятие раздражений, переработка его и перенос на реагирующий орган - исполнитель. Совокупность нейронов, необходимых для осуществления рефлекса, называется рефлекторной дугой. Строение ее может быть как простым, так и очень сложным, включающим в себя и афферентные, и эфферентные системы.

Афферентные системы представляют собой восходящие проводники спинного и головного мозга, которые проводят импульсы от всех тканей и органов. Система, включающая специфические рецепторы, проводники от них и их проекции в коре мозга, определяется как анализатор. Он выполняет функции анализа и синтеза раздражений, т. е. первичного разложения целого на части, единицы и затем постепенного сложения целого из единиц, элементов [Павлов И. П., 1936].

Эфферентные системы начинаются от многих отделов головного мозга: коры больших полушарий, подкорковых узлов, подбугорной области, мозжечка, стволовых структур (в частности, от тех отделов ретикулярной формации, которые оказывают влияние на сегментарный аппарат спинного мозга). Многочисленные нисходящие проводники от этих образований головного мозга подходят к нейронам сегментарного аппарата спинного мозга и дальше следуют к исполнительным органам: поперечно-полосатой мускулатуре, эндокринным железам, сосудам, внутренним органам и кожным покровам.

Нервные клетки обладают способностью воспринимать, проводить и передавать нервные импульсы. Кроме того существуют секреторные нейроны.

Секреторные нейроны синтезируют медиаторы, участвующие в их проведении (нейротрансмиттеры), ацетилхолин, катехоламины, индоламины, а также липиды, углеводы и белки. Некоторые специализированные нервные клетки обладают способностью к нейрокринии (синтезируют белковые продукты - окта-пептиды, например антидиуретический гормон, вазопрессин, окситоцин в клетках супраоптического и паравентрикулярного ядер гипоталамуса). Другие нейроны, входящие в состав базальных отделов гипоталамуса, вырабатывают так называемые рилизинг-факторы, которые оказывают влияние на функцию аденогипофиза.

Тело нервной клетки имеет свои особенности строения, которые обусловлены специфичностью их функции. Нервная клетка, как и всякая соматическая клетка, имеет оболочку, клеточное тело, ядро, центральный аппарат Гольджи, митохондрии и клеточные включения. Но, кроме этого, она содержит еще и некоторые специфические составные части: тигроидное вещество Ниссля и нейрофибриллы.

Тело нейрона, помимо внешней оболочки, имеет трехслойную цитоплазматическую мембрану, состоящую из двух слоев фосфолипидов и белков. Мембрана выполняет барьерную функцию, защищая клетку от поступления чужеродных веществ, и транспортную, обеспечивающую поступление в клетку необходимых для ее жизнедеятельности веществ [показать] .

Различают пассивный и активный транспорт веществ и ионов через мембрану.

  • Пассивный транспорт - это перенос веществ в направлении уменьшения электрохимического потенциала, по градиенту концентрации (свободная диффузия через липидный бислой, облегченная диффузия - транспорт веществ через мембрану).
  • Активный транспорт - перенос веществ против градиента электрохимического потенциала при помощи ионных насосов.
  • Выделяют также цитоз - механизм переноса веществ через мембрану клетки, который сопровождается обратимыми изменениями структуры мембраны.

Через плазматическую мембрану не только регулируется поступление и выход веществ, но и осуществляется обмен информацией между клеткой и внеклеточной средой. Мембраны нервных клеток содержат множество рецепторов, активация которых приводит к повышению внутриклеточной концентрации циклического аденозинмонофосфата (цАМФ) и циклического гуанозинмонофосфата (цГМФ), регулирующих клеточный метаболизм.

Ядро нейрона [показать] .

Ядро нейрона - это наиболее крупная из клеточных структур, видимых при световой микроскопии. Оно имеет шаровидную или пузырькообразную форму и, в большинстве нейронов, располагается в центре тела клетки. В нем расположены гранулы хроматина, представляющие комплекс дезоксирибонуклеиновой кислоты (ДНК) с простейшими белками (гистонами), негистоновыми белками (нуклеопротеидами), протаминами, липидами и др. Хромосомы становятся видны лишь во время митоза.

В центре ядра расположено ядрышко, содержащее значительное количество РНК и белков, в нем формируется рибосомальная РНК (рРНК).

Генетическая информация, заключенная в ДНК хроматина, подвергается транскрипции в матричную РНК (мРНК). Затем молекулы мРНК проникают через поры ядерной мембраны и поступают в рибосомы и полирибосомы гранулярного эндоплазматического ретикулума. Там происходит синтез молекул белка; при этом используются аминокислоты, приносимые специальными транспортными РНК (тРНК). Этот процесс называется трансляцией. Некоторые вещества (цАМФ, гормоны и др.) могут увеличивать скорость транскрипции и трансляции.

Ядерная оболочка состоит из двух мембран - внутренней и внешней. Поры, через которые осуществляется обмен между нуклеоплазмой и цитоплазмой, занимают 10% поверхности ядерной оболочки. Кроме того, внешняя ядерная мембрана образует выпячивания, из которых возникают тяжи эндоплазматической сети с прикрепленными к ним рибосомами (гранулярный ретикулум). Ядерная мембрана и мембрана эндоплазматической сети морфологически близки друг другу.

В телах и крупных дендритах нервных клеток при световой микроскопии хорошо видны глыбки базофильного вещества (тигроидное вещество или субстанция Ниссля).

Тигроидное вещество было впервые обнаружено и изучено Нисслем (1889), иначе оно называется глыбками, или тельцами Ниссля, или хроматофильной субстанцией. В настоящее время установлено, что тельца Ниссля являются рибосомами.

Размер глыбок базофильной зернистости и их распределение в нейронах разных типов различны. Это зависит от состояния импульсной активности нейронов, т.к. тигроид активно участвует в процессах обмена. В нем непрерывно синтезируются новые белки цитоплазмы. К этим белкам относятся белки, участвующие в построении и восстановлении клеточных мембран, метаболические ферменты, специфические белки, участвующие в синаптическом проведении, и ферменты, инактивирующие этот процесс. Вновь синтезированные в цитоплазме нейрона белки поступают в аксон (а также в дендриты) для замещения израсходованных белков. Количество хроматофильного вещества в нейронах уменьшается при их длительном функционировании и восстанавливается в покое.

Из всех морфологических частей нервной клетки хроматофильная субстанция наиболее чувствительна к различным физиологическим и патологическим факторам.

Тигроидные зернышки обнаруживаются в теле клетки, в дендритах и отсутствуют в аксонах.

Если аксон нервной клетки перерезается не слишком близко к перикариону (чтобы не вызвать необратимых повреждений), то происходит перераспределение, уменьшение и временное исчезновение базофильного вещества (хроматолиз), и ядро перемещается в сторону. При регенерации аксона в теле нейрона наблюдается перемещение базофильного вещества по направлению к аксону, увеличивается количество гранулярного эндоплазматического ретикулума и числа митохондрий, усиливается белковый синтез и на проксимальном конце перерезанного аксона возможно появление отростков.

Пластинчатый комплекс (аппарат Гольджи) [показать] .

Пластинчатый комплекс (аппарат Гольджи) - система внутриклеточных мембран, каждая из которых представляет собой ряды уплощенных цистерн и секреторных пузырьков. Эту систему цитоплазматических мембран называют агранулярным ретикулумом ввиду отсутствия прикрепленных к ее цистернам и пузырькам рибосом.

Пластинчатый комплекс принимает участие в транспорте из клетки определенных веществ, в частности белков и полисахаридов. Значительная часть белков, синтезированных в рибосомах на мембранах гранулярного эндоплазматического ретикулума, поступив в пластинчатый комплекс, превращается в гликопротеины, которые упаковываются в секреторные пузырьки, а затем выделяются во внеклеточную среду. Это указывает на наличие тесной связи между пластинчатым комплексом и мембранами гранулярного эндоплазматического ретикулума.

Нейрофиламенты можно выявить в большинстве крупных нейронов, где они располагаются в базофильном веществе, а также в миелинизированных аксонах и дендритах. Они представляют собой тончайшие нити, располагающиеся как в теле клетки, так и в ее отростках, причем в теле клетки фибриллы в большинстве случаев имеют сетчатое расположение, в отростках же проходят параллельными пучками.

Нейрофиламенты по своей структуре являются фибриллярными белками с не выясненной до конца функцией. Считается, что они играют основную роль в передаче нервных импульсов, поддерживают форму нейрона, особенно его отростков, и участвуют в аксоплазматическом транспорте веществ вдоль аксона.

По отношению к различным вредностям нейрофибриллы оказываются значительно более выносливыми, чем другие элементы нервной клетки.

Лизосомы [показать] .

представляют собой пузырьки, ограниченные простой мембраной и обеспечивающие фагоцитоз клетки. Они содержат набор гидролитических ферментов, способных гидролизовать вещества, попавшие в клетку. В случае гибели клетки лизосомальная мембрана разрывается и начинается процесс аутолиза - вышедшие в цитоплазму гидролазы расщепляют белки, нуклеиновые кислоты и полисахариды. Нормально функционирующая клетка надежно защищена лизосомальной мембраной от действия гидролаз, содержащихся в лизосомах.

Митохондрии [показать] .

Митохондрии - структуры, в которых локализованы ферменты окислительного фосфорилирования. Митохондрии имеют внешнюю и внутреннюю мембраны. Располагаются они в клеточном теле, дендритах, аксоне, синапсах. В ядре они отсутствуют.

Митохондрии являются своеобразными энергетическими станциями клеток, в которых синтезируется аденозинтрифосфат (АТФ) - основной источник энергии в живом организме.

Благодаря митохондриям в организме осуществляется процесс клеточного дыхания. Компоненты тканевой дыхательной цепи, так же как система синтеза АТФ, локализованы во внутренней мембране митохондрий.

Среди других различных цитоплазматических включений (вакуоли, гликоген, кристаллоиды, железосодержащие гранулы и др.) часто находят желтовато-бурый пигмент - липофусцин. Пигмент этот откладывается в результате жизнедеятельности клетки. У молодых людей липофусцина в нервных клетках мало, в старческом возрасте много. Есть и некоторые пигменты черного или темно-коричневого цвета, подобные меланину (в клетках черной субстанции, голубого пятна, серого крыла и др.). Роль пигментов окончательно не выяснена. Однако известно, что уменьшение числа пигментированных клеток в черной субстанции связано со снижением содержания дофамина в ее клетках и хвостатом ядре, что приводит к синдрому паркинсонизма.

Н Е Й Р О Г Л И Я

Нейроглия - это клетки, окружающие нейроны. Она имеет огромное значение в обеспечении нормального функционирования нейронов, т.к. находится в тесных метаболических взаимоотношениях с ними, принимая участие в синтезе белка, нуклеиновых кислот и хранении информации. Кроме того, нейроглиальные клетки являются внутренней опорой для нейронов центральной нервной системы - они поддерживают тела и отростки нейронов, обеспечивая их надлежащее взаиморасположение. Таким образом нейроглия выполняет в нервной ткани опорную, разграничительную, трофическую, секреторную и защитную функции. Отдельным видам глии приписывают и специальные функции.

Все клетки нейроглии делятся на два генетически различных вида:

  • глиоциты (макроглия)

К макроглии центральной нервной системы относят эпендимоциты, астроциты и олигодендроциты

Эпендимоциты . Они образуют плотный слой клеточных элементов, выстилающих спинномозговой канал и все желудочки мозга. Выполняют пролиферативную, опорную функцию, участвуют в образовании сосудистых сплетений желудочков мозга. В сосудистых сплетениях слой эпендимы отделяет цереброспинальную жидкость от капилляров. Эпендимальные клетки желудочков мозга выполняют функцию гематоэнцефалического барьера. Некоторые эпендимоциты выполняют секреторную функцию участвуя в процессах образования цереброспинальной жидкости и выделяя различные активные вещества прямо в полость мозговых желудочков или кровь. Например, в области задней комиссуры головного мозга эпендимоциты образуют особый "субкомиссуральный орган", выделяющий секрет, возможно, участвующий в регуляции водного обмена.

Астроциты . Они образуют опорный аппарат центральной нервной системы. Различают два вида астроцитов: протоплазматические и волокнистые. Между ними имеются и переходные формы. Протоплазматические астроциты лежат преимущественно в сером веществе центральной нервной системы и несут разграничительную и трофическую функции. Волокнистые астроциты располагаются главным образом в белом веществе мозга и в совокупности образуют плотную сеть - поддерживающий аппарат мозга. Отростки астроцитов на кровеносных сосудах и на поверхности мозга своими концевыми расширениями формируют периваскулярные глиальные пограничные мембраны, играющие важную роль в обмене веществ между нейронами и кровеносной системой [показать] .

В большинстве отделов мозга поверхностные мембраны тел нервных клеток и их отростков (аксонов и дендритов) не соприкасаются со стенками кровеносных сосудов или цереброспинальной жидкостью желудочков, центрального канала и подпаутинного пространства. Обмен веществ между этими компонентами, как правило, осуществляется через так называемый гематоэнцефалический барьер. Этот барьер ничем не отличается от барьера эндотелиальных клеток вообще.

Переносимые с током крови вещества должны пройти прежде всего через цитоплазму эндотелия сосуда. Затем им нужно пройти через базальную мембрану капилляра, слой астроцитарной глии и, наконец, через поверхностные мембраны самих нейронов. Полагают, что две последние структуры являются главными компонентами гематоэнцефалического барьера.

В других органах клетки ткани мозга непосредственно контактируют с базальными мембранами капилляров, а промежуточный слой, аналогичный слою цитоплазмы астроцитарной глии, отсутствует. Крупные астроциты, которые играют важную роль в быстром внутриклеточном переносе метаболитов в нейроны и из нейронов и обеспечивают избирательный характер этого переноса, вероятно, составляют главный морфологический субстрат гематоэнцефалического барьера.

В определенных структурах головного мозга - нейрогипофизе, эпифизе, сером бугре, супраоптической, субфорникальной и других областях - обмен веществ осуществляется очень быстро. Предполагают, что гематоэнцефалический барьер в этих структурах мозга не функционирует.

Основная функция астроцитов - опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.

Олигодендроциты . Это самая многочисленная группа клеток нейроглии. Олигодендроциты окружают тела нейронов в центральной и перферической нервной системе, находятся в составе оболочек нервных волокон и в нервных окончаниях. В разных отделах нервной системы олигодендроциты имеют различную форму. Изучение методом электронной микроскопии показало, что по плотности цитоплазмы клетки олигодендроглии приближаются к нервным и отличаются от них тем, что не содержат нейрофиламентов.

Функциональное значение этих клеток очень разнообразно. Они выполняют трофическую функцию, принимая участие в обмене веществ нервных клеток. Олигодендроциты играют значительную роль в образовании оболочек вокруг отростков клеток, при этом они называются нейролеммоцитами (леммоциты - шванновские клетки). В процессе дегенерации и регенерации нервных волокон олигодендроциты выполняют еще одну очень важную функцию - они участвуют в нейронофагии (от греч. фагос - пожирающий), т.е. удаляют омертвевшие нейроны путем активного поглощения продуктов распада.

К макроглии периферической нервной системе относятся

  • шванновские клетки - это специализированные олигодендроциты, синтезирующие миелиновую оболочку миелинизированных волокон. Они отличаются от олигодендроглии тем, что охватывают обычно только один участок отдельного аксона. Длина такого охвата не превышает 1 мм. Между отдельными шванновскими клетками формируются своеобразные границы, которые носят название перехватов Ранвье.
  • клетки-сателлиты - инкапсулируют нейроны ганглиев спинальных и черепных нервов, регулируя микросреду вокруг этих нейронов аналогично тому, как это делают астроциты.
  • микроглия - это мелкие клетки, разбросанные в белом и сером веществе нервной системы. Клетки микроглии являются глиальными макрофагами и выполняют защитную функцию, принимая участие в разнообразных реакциях в ответ на повреждающие факторы. При этом клетки микроглии сначала увеличиваются в объеме, затем митотически делятся. Измененные при раздражении клетки микроглии называются зернистыми шарами.

Н Е Р В Н Ы Е В О Л О К Н А

Главной составной частью нервного волокна является отросток нервной клетки. Нервный отросток окружен оболочками, вместе с которыми он и образует нервное волокно.

В различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, поэтому в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиновые (мякотные волокна) и безмиелиновые (безмякотные) или, вернее, бедные миелином (тонкомиелинизированные волокна). Те и другие состоят из отростка нервной клетки, который лежит в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются нейролеммоцитами (шванновские клетки).

В центральной и периферической нервной системе преобладают мякотные волокна, в вегетативной нервной системе - безмякотные. В кожных нервах число безмякотных волокон может превышать число мякотных в 3-4 раза. Напротив, в мышечных нервах безмякотных волокон очень мало. В блуждающем нерве безмякотные волокна составляют почти 95%.

Безмиелиновые нервные волокна

Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа.

При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфтой. Оболочки леммоцитов при этом прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (см. рис. Б). Немиелинизированные волокна вегетативной нервной системы оказываются покрытыми единичной спиралью мембраны леммоцита.

Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, "одевающий" осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Миелиновые нервные волокна

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 1 до 20 мкм. Они также состоят из осевого цилиндра, "одетого" оболочкой из нейролеммоцитов, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (см. рис. А) и наружный, тонкий, состоящий из цитоплазмы и ядер нейролеммоцитов - нейролемму.

Миелиновые оболочки содержат холестерин, фосфолипиды, некоторые цереброзиды и жирные кислоты, а также белковые вещества, переплетающиеся в виде сети (нейрокератин). Химическая природа миелина периферических нервных волокон и миелина центральной нервной системы несколько различна. Это связано с тем, что в центральной нервной системе миелин образуется клетками олигодендроглии, а в периферической - леммоцитами (шванновскими клетками). Эти два вида миелина обладают и различными антигенными свойствами, что выявляется при инфекционно-аллергической природе заболевания.

Миелиновая оболочка нервного волокна местами прерывается, образуя так называемые перехваты Ранвье. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой. Миелиновая оболочка обеспечивает роль электрического изолятора. Кроме того, предполагается ее участие в процессах обмена осевого цилиндра.

Миелинизация периферического нервного волокна осуществляется леммоцитами (олигодендроцитами в центральной нервной системе и шванновскими клетками в периферической). Эти клетки формируют отросток цитоплазматической мембраны, который спиралевидно обертывает нервное волокно, при этом формируется мезаксон. При дальнейшем развитии мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону - миелиновый слой. Может сформироваться до 100 спиральных слоев миелина правильной пластинчатой структуры (рис.).

В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы (ПНС) имеются отличия. При формировании миелина ЦНС один олигодендроглиоцит имеет связи с несколькими сегментами миелина нескольких аксонов; при этом к аксону примыкает отросток олигодендроглиоцита, расположенного на некотором расстоянии от аксона, а внешняя поверхность миелина соприкасается с внеклеточным пространством.

Шванновская клетка при образовании миелина ПНС формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки между перехватами Ранвье. Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки. Эта зона, содержащая оттесненную сюда цитоплазму нейролеммоцитов (шванновских клеток) и их ядра, называется наружным слоем (нейролемма) и является периферической зоной нервного волокна.

Миелиновая оболочка обеспечивает изолированное, бездекрементное (без падения амплитуды потенциала) и более быстрое проведение возбуждения вдоль нервного волокна (сальтаторное проведение возбуждения, т. е. прыжками, от одного перехвата Ранвье к другому). Имеется прямая зависимость между толщиной этой оболочки и скоростью проведения импульсов. Волокна с толстым слоем миелина проводят импульсы со скоростью 70-140 м/с, в то время как проводники с тонкой миелиновой оболочкой со скоростью около 1 м/с и еще медленнее - "безмякотные" волокна (0,3-0,5 м/с), т.к. в безмиелиновом (безмякотном) волокне волна деполяризации мембраны идет не прерываясь по всей плазмолемме.

Осевой цилиндр нервных волокон состоит из нейроплазмы - цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат много нитевидных митохондрий, аксоплазматических пузырьков, нейрофиламентов и нейротрубочек. Рибосомы в аксоплазме встречаются очень редко. Гранулярный эндоплазматический ретикулум отсутствует. Это приводит к тому, что тело нейрона снабжает аксон белками; поэтому гликопротеиды и ряд макромолекулярных веществ, а также некоторые органеллы, такие как митохондрии и различные пузырьки, должны перемещаться по аксону из тела клетки. Этот процесс называется аксонным, или аксоплазматическим, транспортом [показать] .

Аксонный транспорт

Процессы внутриклеточного транспорта наиболее ярко могут быть продемонстрированы на аксоне нервной клетки. Предполагается, что аналогичные события сходным образом происходят в большинстве клеток.

Давно известно, что когда какой-либо из участков аксона подвергается констрикции, часть аксона, расположенная проксимальнее, расширяется. Это выглядит так, как будто в аксоне блокирован центробежный поток. Такой поток - быстрый аксонный транспорт - может быть продемонстрирован движением в эксперименте радиоактивных маркеров.

Лейцин, меченный радиоактивной меткой, инъецировали в ганглий дорсального корешка, и затем со 2-го по 10-й час измеряли радиоактивность в седалищном нерве на расстоянии 166 мм от тел нейронов. За 10 часов пик радиоактивности в месте инъекции менялся незначительно. Но волна радиоактивности распространялась по аксону с постоянной скоростью около 34 мм за 2 ч, или 410 мм * сут -1 . Показано, что во всех нейронах гомойотермных животных быстрый аксонный транспорт осуществляется с такой же скоростью, причем ощутимых различий между тонкими, безмиелиновыми волокнами и наиболее толстыми аксонами, а также между моторными и сенсорными волокнами не наблюдается. Тип радиоактивного маркера также не влияет на скорость быстрого аксонного транспорта; маркерами могут служить разнообразные радиоактивные молекулы, такие, как различные аминокислоты, включающиеся в белки тела нейрона.

Если проанализировать периферическую часть нерва, чтобы определить природу переносчиков транспортированной сюда радиоактивности, то такие переносчики обнаруживаются главным образом во фракции белков, но также в составе медиаторов и свободных аминокислот. Зная, что свойства этих веществ различны и особенно различны размеры их молекул, постоянную скорость транспорта мы можем объяснять только общим для всех них транспортным механизмом.

Описанный выше быстрый аксонный транспорт является антероградным, т. е. направленным от тела клетки. Показано, что некоторые вещества движутся от периферии к телу клетки с помощью ретроградного транспорта. Например, ацетилхолинэстераза транспортируется в этом направлении со скоростью в 2 раза меньшей, чем скорость быстрого аксонного транспорта. Маркер, часто используемый в нейроанатомии - пероксидаза хрена - также перемещается ретроградным транспортом. Ретроградный транспорт, вероятно, играет важную роль в регуляции белкового синтеза в теле клетки.

Через несколько дней после перерезки аксона в теле клетки наблюдается хроматолиз, что свидетельствует о нарушении белкового синтеза. Время, требующееся для хроматолиза, коррелирует с длительностью ретроградного транспорта от места перерезки аксона до тела клетки. Такой результат предполагает и объяснение этого нарушения - нарушается передача с периферии "сигнального вещества", регулирующего белковый синтез.

Очевидно, что основными "средствами передвижения", используемыми для быстрого аксонного транспорта, являются везикулы (пузырьки) и органеллы, такие, как митохондрии, содержащие вещества, которые нужно транспортировать.

Перемещение наиболее крупных везикул или митохондрий можно наблюдать с помощью микроскопа in vio. Такие частицы совершают короткие быстрые движения в одном из направлений, останавливаются, часто двигаются немного назад или в сторону, снова останавливаются, а затем совершают рывок в основном направлении. 410 мм * сут -1 соответствуют средней скорости антероградного движения приблизительно 5 мкм * с -1 ; скорость же каждого отдельного движения должна быть, следовательно, значительно выше, а если учесть размеры органелл, филаментов и микротрубочек, то эти движения действительно очень быстры.

Быстрый аксонный транспорт требует значительной концентрации АТФ. Такие яды, как колхицин, разрушающий микротрубочки, также блокируют быстрый аксонный транспорт. Из этого следует, что в рассматриваемом нами транспортном процессе везикулы и органеллы движутся вдоль микротрубочек и актиновых филаментов; это движение обеспечивается малыми агрегатами молекул динеина и миозина, действующих с использованием энергии АТФ.

Быстрый аксонный транспорт может участвовать и в патологических процессах. Некоторые нейротропные вирусы (например, вирусы герпеса или полиомиелита) проникают в аксон на периферии и движутся с помощью ретроградного транспорта к телу нейрона, где размножаются и оказывают свое токсическое действие. Токсин столбняка - белок, который продуцируется бактериями, попадающими в организм при повреждениях кожи, захватывается нервными окончаниями и транспортируется к телу нейрона, где он вызывает характерные мышечные спазмы.

Известны случаи токсического воздействия на сам аксонный транспорт, например воздействие промышленным растворителем акриламидом. Кроме того, полагают, что патогенез авитаминоза "бери бери" и алкогольной полинейропатии включает нарушение быстрого аксонного транспорта.

Помимо быстрого аксонного транспорта в клетке существует и довольно интенсивный медленный аксонный транспорт . Тубулин движется по аксону со скоростью около 1 мм * сут -1 , а актин быстрее - до 3 мм * сут -1 . С этими компонентами цитоскелета мигрируют и другие белки; например, ферменты, по-видимому, связаны с актином или тубулином.

Скорости перемещения тубулина и актина примерно согласуются со скоростью роста, обнаруженной для механизма, описанного ранее, когда молекулы включаются в активный конеп микротрубочки или микрофиламента. Следовательно, этот механизм может лежать в основе медленного аксонного транспорта. Скорость медленного аксонного транспорта примерно соответствует также скорости роста аксона, что, по-видимому, указывает на ограничения, накладываемые структурой цитоскелета на второй процесс.

Определенные цитоплазматические белки и органоиды движутся вдоль аксона двумя потоками с различной скоростью. Один - медленный поток, движущийся по аксону со скоростью 1-3 мм/сут, перемещает лизосомы и некоторые ферменты, необходимые для синтеза нейромедиаторов в окончаниях аксонов. Другой поток - быстрый, также направляется от тела клетки, но его скорость составляет 5-10 мм/ч (примерно в 100 раз выше скорости медленного потока). Этот поток транспортирует компоненты, необходимые для синаптической функции (гликопротеиды, фосфолипиды, митохондрии, дофамингидроксилаза для синтеза адреналина).

Дендриты обычно гораздо короче аксонов. В отличие от аксона дендриты дихотомически ветвятся. В ЦНС дендриты не имеют миелиновой оболочки. Крупные дендриты отличаются от аксона также тем, что содержат рибосомы и цистерны гранулярного эндоплазматического ретикулума (базофильное вещество); здесь также много нейротрубочек, нейрофиламентов и митохондрий. Таким образом, дендриты имеют тот же набор органоидов, что и тело нервной клетки. Поверхность дендритов значительно увеличивается за счет небольших выростов (шипиков), которые служат местами синаптического контакта.

Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервных окончаний.

С О Е Д И Н И Т Е Л Ь Н А Я Т К А Н Ь

Соединительная ткань представлена в центральной нервной системе оболочками головного и спинного мозга, сосудами, проникающими вместе с мягкой мозговой оболочкой в вещество мозга, и сосудистое сплетение желудочков.

В периферических нервах соединительная ткань образует оболочки, одевающие нервный ствол (эпиневрий), отдельные пучки его (периневрий) и нервные волокна (эндоневрий). В оболочках проходят сосуды, питающие нерв.

Особенно велико значение сосудисто-соединительнотканного аппарата в защите нервной ткани от различных вредностей и борьбе c вредностями, уже проникшими в центральную нервную систему или в периферический нерв.

Скопление в спинном и головном мозге тел нейронов и дендритов составляет серое вещество мозга, а отростки нервных клеток образуют белое вещество мозга. Тела нервных клеток формируют скопления и называются ядрами в центральной нервной системе и ганглиями (нервными узлами) - в периферической.

В мозжечке и в больших полушариях клетки образуют слоистые (стратифицированные) структуры, называемые корой.

КЛЕТОЧНАЯ СТРУКТУРА (ЦИТОАРХИТЕКТОНИКА) КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

Кора покрывает всю поверхность больших полушарий. Ее структурными элементами являются нервные клетки с отходящими от них отростками - аксонами и дендритами - и клетки нейроглии.

В коре полушарий большого мозга человека насчитывают около 12-18 млрд. нервных клеток. Из них 8 млрд. составляют крупные и средних размеров клетки третьего, пятого и шестого слоев, около 5 млрд. приходится на мелкие клетки различных слоев. [показать]

Кора головного мозга имеет неодинаковое строение в различных областях. Это хорошо известно со времени Вик д"Азира - французского анатома, описавшего в 1782 г. носящие его имя полоски белого вещества, макроскопически видимые в коре затылочной доли. Давно обращала на себя внимание также крайне неодинаковая толщина серого вещества плаща. Толщина коры колеблется от 4,5 мм (в области передней центральной извилины) до 1,2 мм (в области sulcus calcarinus).

В 1874 г. В.А. Бец открыл гигантские пирамидные клетки (клетки Беца) в коре передней центральной извилины человека и в двигательной области коры животных и подчеркнул отсутствие этих клеток в областях коры, раздражение которых электрическим током не вызывает двигательного эффекта.

Цитоархитектоническое изучение коры головного мозга взрослых людей, человеческих эмбрионов и коры мозга различных животных позволило разделить ее на две области: гомогенетическую и гетерогенетическую (по Бродману) или изокортекс и аллокортекс (по Фохту).

Гомогенетическая кора (изокортекс) в своем развитии обязательно проходит фазу шестислойной структуры, гетерогенетическая же кора (аллокортекс) формируется, не проходя эту фазу. Филогенетические исследования показывают, что изокортекс соответствует новой коре - neocortex, появляющейся у более высоко организованных животных и достигающей наибольшего развития у человека, аллокортекс же соответствует старой коре, paleo- и archicortex. В мозге человека аллокортекс занимает только 5% всей коры, а 95% принадлежит изокортексу.

Те области изокортекса, которые и у взрослого сохраняют шестислойное строение, составляют гомотипическую кору. Гетеротипическая кора - часть изокортекса, отклонившаяся от шестислойной структуры в сторону уменьшения или увеличения количества слоев.

В гетеротипических областях изокортекса шестислойное строение коры нарушается. Различают

  • агранулярную гетеротипию

    Агранулярные области коры человека полностью или почти полностью лишены наружного и внутреннего зернистых слоев. Место клеток-зерен заняли пирамидные клетки различной величины, почему агранулярную область иначе называют пирамидизированной корой.

    Агранулярная гетеротипия характеризует главным образом некоторые двигательные участки коры, особенно переднюю центральную извилину, где лежат многочисленные гигантские клетки Беца.

  • гранулярную гетеротипию

    В районе гранулярной гетеротипии кора головного мозга представляет обратную картину. Здесь пирамидные клетки третьего и пятого слоев в большинстве своем вытеснены густо расположенными мелкими клетками-зернами.

    Гранулярная гетеротипия представлена в чувствительных областях коры.

Основная масса клеток коры состоит из элементов трех родов:

  • пирамидных клеток
  • веретенообразных клеток
  • звездчатых клеток

Полагают, что пирамидные и веретенообразные клетки с длинными аксонами представляют преимущественно эфферентные системы коры, а звездчатые - преимущественно афферентные. Считают, что клеток нейроглии в головном мозге в 10 раз больше, чем ганглиозных (нервных) клеток, т. е. около 100-130 млрд. Толщина коры варьирует от 1,5 до 4 мм. Общая поверхность обоих полушарий коры у взрослого человека составляет от 1450 до 1700 см 2 .

Особенностью структуры коры больших полушарий является расположение нервных клеток в шесть слоев, лежащих друг над другом.

  1. первый слой - lamina zonalis, зональный (краевой) слой или молекулярный - беден нервными клетками и образован в основном сплетением нервных волокон
  2. второй - lamina granularis externa, наружный зернистый слой - называется так из-за наличия в нем густо расположенных мелких клеток, диаметром 4-8 мк,имеющих на микроскопических препаратах форму круглых, треугольных и многоугольных зерен
  3. третий - lamina pyramidalis, пирамидальный слой - имеет большую толщину, чем первые два слоя. В нем содержатся пирамидные клетки разной величины
  4. четвертый - lamina dranularis interna, внутренний зернистый слой - подобно второму слою, он состоит из мелких клеток. Этот слой в некоторых участках коры больших полушарий взрослого организма может отсутствовать; так, например, его нет в моторной области коры
  5. пятый - lamina gigantopyramidalis, слой больших пирамид (гигантские клетки Беца) - от верхней части этих клеток отходит толстый отросток - дендрит, многократно ветвящийся в поверхностных слоях коры. Другой длинный отросток - аксон - больших пирамидных меток уходит в белое вещество и направляется к подкорковым ядрам или к спинному мозгу.
  6. шестой - lamina multiformis, полиморфный слой (мультиформный) - состоит из клеток треугольной формы и веретенообразных

По функциональному признаку нейроны коры больших полушарий могут быть подразделены на три основные группы.

  1. Сенсорные нейроны коры больших полушарий, так называемые звездчатые нейроны, которые в особенно большом количестве находятся в III и IV слоях сенсорных областей коры. На них оканчиваются аксоны третьих нейронов специфических афферентных путей. Эти клетки обеспечивают восприятие афферентных импульсов, приходящих в кору больших полушарий из ядер зрительных бугров.
  2. Моторные (эффекторны) нейроны - клетки, посылающие импульсы в лежащие ниже отделы мозга - к подкорковым ядрам, стволу мозга и спинному мозгу. Это большие пирамидные нейроны, которые впервые описал В. А. Бец в 1874 г. Они сконцентрированы в основном в V слое моторной зоны коры. В осуществлении эффекторной функции коры принимают участие и некоторые веретенообразные клетки.
  3. Контактные, или промежуточные, нейроны - клетки, осуществляющие связь между различными нейронами одной и той же или различных зон коры. К их числу относятся мелкие и средние пирамидные и веретенообразные клетки.

СТРУКТУРА МИЕЛИНОВЫХ ВОЛОКОН (МИЕЛОАРХИТЕКТОНИКА) КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

Миелоархитектонически кора головного мозга человека также делится в основном на шесть слоев, соответствующих указанным клеточным слоям. Миелоархитектонические слои еще в большей степени, чем слои цитоархитектонические, распадаются на подслои и крайне изменчивы в различных участках коры.

В сложной структуре нервных волокон коры больших полушарий различают

  • горизонтальные волокна, соединяющие различные участки коры, и
  • радиальные волокна, связывающие серое и белое вещество.

Приведнное описание клеточной структуры коры является в известной мере схематическим, поскольку имеются значительные вариации в степени развития указанных слоев в различных областях коры.

Нервная ткань образует центральную нервную систему (головной и спинной мозг) и периферическую (нервы, нервные узлы - ганглии). Она состоит из нервных клеток - нейронов (нейроцитов) и нейроглии, которая выполняет роль меж клеточного вещества.

Нейрон способен воспринимать раздражения, превращать его в возбуждение (нервный импульс) и передавать его другим клеткам организма. Благодаря этим свойствам, нервная ткань регулирует деятельность организма, обусловливает взаимо связь органов и тканей, осуществляет приспособление организма к внешней среде.

Нейроны различных отделов ЦНС отличаются размерами и формой. Но общей характерной чертой является наличие отростков, по которым передаются импульсы. Нейрон имеет 1 длинный отросток - аксон и много коротких - дендритов. Дендриты проводят возбуждение к телу нервной клетки, а аксоны - от тела на периферию к рабочему органу. По функции нейроны бывают: чувствительные (афферентные), промежуточные или контактные (ассоциативные), двигательные (эфферентные).

По количеству отростков нейроны разделяют на:

1. Униполярные - имеют 1 отросток.

2. Ложные униполярные - от тела отходят 2 отростка, которые сначала идут вместе, что создает впечатление одного отростка, поделенного пополам.

3. Биполярные - имеют 2 отростка.

4. Мультиполярные - имеют много отростков.

Нейрон имеет оболочку (нейролему), нейроплазму и ядро. Нейроплазма имеет все органоиды и специфический органоид - нейрофибриллы -это тонкие нити, по которым передается возбуждение. В теле клетки они расположены параллельно друг другу. В цитоплазме вокруг ядра лежит тигроидное вещество, или глыбки Ниссля. Это зернистость образована скоплением рибосом.

Во время длительного возбуждения она исчезает, а в состоянии покоя снова появляется. Строение его меняется во время различных функциональных состояниях нервной системы. Так,при отравлениях,кислородном голодании и других не благоприятных воздействий глыбки распадаются и исчезают. Считают,что это часть цитоплазмы,в которой активно синтезируются белки.

Место контакта двух нейронов или нейрона и другой клетки называют синапсом. Составные части синапса - это пре - и пост - синаптические мембраны и синаптичная щель.В пресинаптических частях образуются, накапливаются специфические химические вещества-медиаторы, которые способствуют прохождению возбуждения.

Нейронные отростки, покрытые оболочками, называются нервными волокнами. Совокупность нервных волокон, покрытых общей соединительно-тканной оболочкой, называют нервом.

Все нервные волокна делятся на 2 основные группы - миелиновые и безмиелиновые. Все они состоят из отростка нервной клетки (аксона или дендрита), который лежит в центре волокна и поэтому называются осевым цилиндром, и оболочка, которая состоит из шванновских клеток (леммоцитов).

Безмиелиновые нервные волокна входят в состав вегетативной нервной системы.

Миелиновые нервные волокна имеют больший диаметр чем безмиелиновые. Они тоже состоят из цилиндра, но имеют две оболочки:

Внутреннюю, более толстую - миелиновую;

Наружную - тонкую, которая состоит из леммоцитов. Миелиновий слой содержит липиды. Через некоторое расстояние (несколько мм) миелин прерывается и образуются перехваты Ранвье.

На основе физиологических особенностей нервные окончания разделяют на рецепторы и эффекторы. Рецепторы, которые воспринимают раздражение из внешней среды - это экстерорецепторы, а которые получают раздражение от тканей внутренних органов - интерорецепторы. Рецепторы делят на механо-, термо-, баро-, хеморецепторы и проприорецепторы (рецепторы мышц, сухожилий, связок).

Под эффекторами понимают окончания аксонов, которые передают нервный импульс от тела нервной клетки к другим клеткам организма. К эффекторам относят - нервно - мышечные, нервно - эпителиальные, нервно - секреторные окончания.

Нервные волокна, как и сама нервная и мышечная ткань, обладают следующими физиологическими свойствами: возбудимостью, проводимостью, рефрактерностью (абсолютной и относительной) и лабильностью.

Возбудимость - способность нервного волокна отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения. Проводимостью принято называть способность волокна проводить возбуждение.

Рефрактерность - это временное снижение возбудимости ткани, возникающее после ее возбуждения. Она может быть абсолютной, когда наблюдается полное снижение возбудимости ткани, наступающее сразу после ее возбуждения, и относительной, когда через неĸᴏᴛᴏᴩᴏᴇ время возбудимость начинает восстанавливаться.

Лабильность, или функциональная подвижность, - способность живой ткани возбуждаться в единицу времени определенное число раз.

Проведение возбуждения по нервному волокну подчиняется трем основным законам.

1) Закон анатомической и физиологической непрерывности гласит, что проведение возбуждения возможно лишь при условии анатомической и физиологической непрерывности нервных волокон.

2) Закон двустороннего проведения возбуждения: при нанесении раздражения на а нервное волокно возбуждение распространяется по нему в обе стороны, ᴛ.ᴇ. центробежно и центростремительно.

3) Закон изолированного проведения возбуждения: возбуждение идущее по одному волокну, не передается на соседнее и оказывает действие только на те клетки, на которых это волокно оканчивается.

Синапсом (греч. synaps - соединение, связь) принято называть функциональное соединение между пресинаптическим окончанием аксона и мембраной постсинаптической клетки. Термин ʼʼсинапсʼʼ был введен в 1897 физиологом Ч.Шеррингтоном. В любом синапсе различают три основные части: пресинаптическую мембрану, синаптическую щель и постсинаптическую мембрану. Возбуждение передается через синапс при помощи медиатора.

Нейроглия.

Ее клеток в 10 раз больше, чем нейронов. Она составляет 60 - 90 % всей массы.

Нейроглию разделяют на макро - и микроглию. Клетки макроглии лежат в веществе мозга между нейронами, выстилают желудочки мозга, канал спинного мозга. Она выполняет защитную, опорную и трофическую функции.

Микроглия состоит из крупных подвижных клеток. Их функция - фагоцитоз погибших нейроцитов и посторонних частиц.

(фагоцитоз – процесс, при котором клетки (простейшие, либо специально предназначенные для этого клетки крови и тканей организма - фагоциты ) захватывают и переваривают твёрдые частицы.)

Нервная ткань осуществляет управление всеми процессами в организме.

Нервная ткань состоит из нейронов (нервных клеток) и нейроглии (межклеточное вещество). Нервные клетки имеют различную форму. Нервная клетка снабжена древовидными отростками - дендритами, передающими раздражения от рецепторов к телу клетки, и длинным отростком - аксоном, который заканчивается на эффекторной клетке. Иногда аксон не покрыт миелиновой оболочкой.

Нервные клетки способны под действием раздражения приходить в состояние возбуждения , вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками и осуществляет трофическую, секреторную, защитную функции и функцию опоры.

Нервные клетки - нейроны, или нейроциты, представляют собой отростчатые клетки. Размеры тела нейрона колеблются в значительных пределах (от 3-4 до 130 мкм). По форме нервные клетки также очень разные. Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую, длина отростков от нескольких микрон до 1,0-1,5 м.

Строение нейрона . 1 - тело клетки; 2 - ядро; 3 - дендриты; 4 - нейрит (аксон); 5 - разветвленное окончание нейрита; 6 - неврилемма; 7 - миелин; 8 - осевой цилиндр; 9 - перехваты Ранвье; 10 - мышца

Различают два вида отростков нервной клетки. Отростки первого вида проводят импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, они называются нейритами, или аксонами. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе. Отростки второго вида называются дендритами, они древовидно ветвятся. Их количество у разных нейронов различно. Эти отростки проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты - чувствительные нервные окончания, или рецепторы.

Классификация нейронов по функции:

  1. воспринимающие (чувствительные, сенсорные, рецепторные). Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС;
  2. контактные (промежуточные, вставочные, интернейроны). Обеспечивают переработку, хранение и передачу информации к двигательным нейронам. Их в ЦНС большинство;
  3. двигательные (эфферентные). Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

Виды нейронов по количеству отростков:

  1. униполярные – имеющие один отросток;
  2. псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви;
  3. биполярные – два отростка, один дендрит, другой аксон;
  4. мультиполярные – имеют один аксон и много дендритов.


Нейроны (нервные клетки). А - мультиполярный нейрон; Б - псевдоуниполярный нейрон; В - биполярный нейрон; 1 - аксон; 2 - дендрит

Аксоны, покрытые оболочкой называются нервными волокнами . Различают:

  1. непрерывные - покрыты непрерывной оболочкой, находятся в составе вегетативной нервной системы;
  2. мякотные - покрыты сложной, прерывной оболочкой, импульсы могут переходить с одного волокна на другие ткани. Это явление называется иррадиацией.


Нервные окончания . А - двигательное окончание на мышечном волокне: 1 - нервное волокно; 2 - мышечное волокно; Б - чувствительные окончания в эпителии: 1 - нервные окончания; 2 - клетки эпителия

Чувствительные нервные окончания (рецепторы ) образованы концевыми разветвлениями дендритов чувствительных нейронов.

  • экстерорецепторы воспринимают раздражения из внешней среды;
  • интерорецепторы воспринимают раздражения от внутренних органов;
  • проприорецепторы воспринимающие раздражения от внутреннего уха и суставных сумок.

По биологическому значению рецепторы делятся на: пищевые , половые , оборонительные .

По характеру ответной реакции рецепторы делятся на: двигательные - находятся в мышцах; секреторные - в железах; сосудодвигательные - в кровеносных сосудах.

Эффектор - исполнительное звено нервных процессов. Эффекторы бывают двух типов - двигательные и секреторные. Двигательные (моторные) нервные окончания являются концевыми разветвлениями нейритов двигательных клеток в мышечной ткани и называются нервно-мышечными окончаниями. Секреторные окончания в железах образуют нервно-железистые окончания. Названные виды нервных окончаний представляют собой нервно-тканевой синапс.

Связь между нервными клетками осуществляется при помощи синапсов. Они образованы концевыми ветвлениями нейрита одной клетки на теле, дендритах или аксонах другой. В синапсе нервный импульс проходит только в одном направлении (с нейрита на тело или дендриты другой клетки). В различных отделах нервной системы они устроены по-разному.