Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками. Дано: PA1A2…An – правильная пирамида Док - ть: 1) А1Р = А2Р = … = АnР 2) ?А1А2Р = ?А2А3Р = … = = ?Аn-1АnР – р/б.

Слайд 7 из презентации «Пирамиды» . Размер архива с презентацией 181 КБ.

Геометрия 10 класс

краткое содержание других презентаций

«Пирамида 10 класс» - А2. Содержание. Многогранник, составленный из n-угольника А1А2…Аn и n треугольников, называется пирамидой. Основание. Урок математики в 10 классе по теме «Пирамида». Аn. Вершина пирамиды. МБОУ «СОШ№22 с углубленным изучением английского языка» г.Нижнекамска РТ. А. А3. А1. C.

«Параллелепипед 10 класс» - Смежные грани. C1. Геометрия 10 класс. A1. C. D1. D. Противоположные грани. № 76. Докажите, что AC II A1C1 и BD II B1D1.

«Векторы геометрия 10 класс» - Вектора. Векторы в пространстве. Геометрия 10 класс. CB CM. Шагаева Анна Борисовна МОУ «Барагашская СОШ». Действия с векторами. Вырази вектор. Сумма векторов. Ас аn am. Вектор – как направленный отрезок.

«Сечения параллелепипеда» - 4. ? MNK- сечение параллелепипеда ABCDA’B’C’D’. Урок - практикум в 10 классе Учитель математики Швенк А.В. (MNK) ? (ADD’A’) = MN. (MNK) ? (A’B’C’D’) = NK. Сечения парллелепипеда. Задачи урока. Секущая плоскость пересекает противоположные грани параллелепипеда по параллельным отрезкам. Сечения параллелепипеда.

«Вектор в геометрии» - Вычитание векторов. Сложение и вычитание векторов. Правило параллелограмма. Такой вектор называется нулевым. Разность векторов а и b можно найти по формуле Где - вектор, противоположный вектору. Длиной ненулевого вектора называется длина отрезка АВ. На рис. 2 , т.к. и, а, т.к. . - векторы считаются сонаправленными. - векторы противоположно направлены.
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • доказать свойства пирамиды с равными рёбрами;
  • сформировать умения использовать данную теорему при анализе условия задачи и построения чертежа к задаче;
  • сформировать у учащихся умения использовать данную теорему при решении двух шаговых задач.

I. Домашнее задание каждый ученик получает на заранее отпечатанных листочках.

Теория: по учебнику п.14.2, стр.110-111,2)и 3 задачи:

1. В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к плоскости основания под углом?. Найти высоту пирамиды.

2. В основании пирамиды лежит треугольник со сторонами , ,4. Боковые рёбра наклонены к плоскости основания под углом 45 0 . Найти высоту пирамиды.

3. Площадь основания правильной четырёхугольной пирамиды равна S. Боковые рёбра наклонены к плоскости основания под углом?. Найти высоту пирамиды.

II. Устная работа по готовым чертежам. (Каждый ребёнок получает лист А-4 с чертежами треугольной пирамиды).

2.1. Докажем 3 (прямые) теоремы. Дано: МАВС треугольная пирамида, МО – высота пирамиды.

1. Ученики доказывают “ простую” теорему из одного условия и одного заключения

2. Используют признак равенства прямоугольных треугольников по катету и гипотенузе

3. Делают вывод: из того что АО = ВО =СО, следует О – центр окружности, описанной около основания.

4.Учитель уточняет формулировки данного обстоятельства “основание пирамиды совпадает с центром окружности, описанной около основания” или “ вершина пирамиды проектируется в центр окружности, описанной около основания.

(к рис.2,3). Заменить условие теоремы, сохранить её заключение. Опираясь на признаки равенства прямоугольных треугольников, ученики приходят к выводу о том, что можно потребовать равенство углов между боковыми рёбрами и плоскостью основания или равенство углов между боковыми рёбрами и высотой пирамиды.

Итак, из каких условий можно сделать вывод, что основание высоты пирамиды совпадает с центром окружности, описанной около основания?

2.2. Сформулируем обратные утверждения. Верны ли эти утверждения?

Ученики, используя признаки равенства прямоугольных треугольников, доказывают обратные утверждения. Дано: МАВС треугольная пирамида, МО – высота пирамиды, О – центр окружности, описанной около основания, АО=ВО=СО.

2.3. Формулировка теоремы для n-угольной пирамиды.

Постановка проблемы: справедливо ли данное утверждение для n-угольной пирамиды? Ученикам предлагается доказать три прямых утверждения по аналогии.

Теорема. В n-угольной пирамиде с равными боковыми рёбрами основание высоты совпадает с центром окружности, описанной около основания; высота составляет равные углы с боковыми ребрами; боковые ребра составляют равные углы с плоскостью основания.

Рисунок 7.

2.4. Работа после доказательства теоремы (взгляд назад).

А – Боковые рёбра пирамиды равны

В – Боковые рёбра пирамиды составляют с плоскостью основания равные углы

С – Боковые рёбра пирамиды составляют с высотой пирамиды равные углы

М – Основание пирамиды совпадает с центром окружности, описанной около основания

Учитывая все 6 простых теорем, ученики подводятся к выводу

2. Учитель показывает утверждении А(В, С,М), ученик формулирует 3 простые теоремы.

III. Формулировка темы урока. (Свойства пирамиды с равными боковыми ребрами).

Какая же тема сегодняшнего урока? (Любое из утверждений А, В, С, М может быть принято за тему урока).

IV. Составление алгоритма

Дано: треугольной пирамиды МАВС, МО – высота пирамиды. Определить высоту пирамиды.

Алгоритм решения двух шаговых задач.

1. Наличие в условии задачи одного из условий (А,В,С,). Из этих условий вытекает М.

2. Решить основание (найти радиус окружности, описанной около основания).

3. Решить прямоугольный треугольник, например, МОА.

1. Составление алгоритма.

2. Актуализация знаний:

а) центр окружности, описанной около основания – точка пересечения серединных перпендикуляров к сторонам треугольника;

б) расположение центра описанной окружности в остроугольном, тупоугольном, прямоугольном треугольниках;

в) формула S = .

V. Применение свойств пирамиды с равными боковыми ребрами к решению задач.

Задача 1. В основании пирамиды лежит равнобедренный прямоугольный треугольник с катетом, равным 2. Боковые рёбра наклонены к плоскости основания под углом 60 0 .

Найти высоту пирамиды.

Рисунок 8

1.Каждый ученик получает лист с условиями задач для решения

2. Стереометрический чертёж не делаем.

Наличие условия “ В”

Выполняем чертёж основания. О - середина гипотенузы, АВ = 4, R = 2

Строим треугольник АМО, находим МО = 6 Ответ: 6

Задача 2. Основание пирамиды – треугольник, две стороны которого 2 и и образуют угол 45 0 . Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 9

Решение. Работаем по алгоритму:

1. Наличие условия “А”.

2. Выполняем чертёж основания. По теореме косинусов находим третью сторону (),значит, треугольник равнобедренный и прямоугольный. О - середина гипотенузы. Гипотенуза равна 2, R = 1

3. Строим треугольник АМО, находим МО = 3 Ответ: 3

Задача 3 В основании пирамиды лежит треугольник со сторонами 5, 12, 13. Угол между высотой и каждым боковым ребром 45 0 . Найти высоту пирамиды.

Рисунок 10

Решение. Работаем по алгоритму:

1. Наличие условия “ С”

2. Выполняем чертёж основания. По теореме, обратной теореме Пифагора выясняем, треугольник – прямоугольный, О - середина гипотенузы,

АВ = 13, R = 6,5

3.Строим треугольник АМО -равнобедренный, находим МО =6,5 Ответ: 6,5

Задача4 Основание пирамиды – равнобедренный треугольник, боковые стороны которого равны и образуют угол 120 0 . Каждое боковое ребро равно . Найти высоту пирамиды.

Рисунок 11

Решение.Работаем по алгоритму:

1. Наличие условия “ А” .

2. Выполняем чертёж основания. угол А - тупой,

О – вне треугольника,

АО – серединный перпендикуляр к ВС, треугольник АОС равносторонний, АВ =,

3.Строим треугольник АМО, МО = = 6 Ответ: 6

VI. Итог урока подвести при решении задач:

1. В основании пирамиды лежит трапеция, боковые рёбра равны. Определить вид трапеции (равнобедренная).

2. В основании пирамиды лежит параллелограмм, углы между боковыми рёбрами и плоскостью основания равны. Определить вид параллелограмма(прямоугольник).

3. В основании пирамиды лежит ромб. Углы между боковыми рёбрами и высотой пирамиды равны. Найти углы ромба. (90 о).

Материал урока.

С пирамидой мы с вами знакомились в курсе геометрии базовой школы. Давайте вспомним, какой многогранник мы назвали пирамидой и основные элементы пирамиды.

Итак, рассмотрим многоугольник A 1 A 2 …A n и точку P, не лежащую в плоскости этого многоугольника. Соединим точку ПЭ отрезками с вершинами многоугольника. В итоге получим n треугольников: PA 1 A 2 , PA 2 A 3 , …, PA n A 1 . Многогранник, составленный из n-угольника A 1 A 2 …A n и этих n треугольников, называется пирамидой.

Многоугольник A 1 A 2 …A n называется основанием пирамиды . Треугольники PA 1 A 2 , PA 2 A 3 , …, PA n A 1 называются боковыми гранями пирамиды . Точка P – вершиной пирамиды , а отрезки PA 1 , PA 2 ,…, PA n – ее боковыми ребрами.

Пирамиду с вершиной P и основанием A 1 A 2 …A n называют n-угольной пирамидой и обозначают так: PA 1 A 2 …A n .

Отрезок, соединяющий вершину пирамиды с плоскостью ее основания и перпендикулярный к этой плоскости, называется высотой пирамиды .

Объединение боковых граней называется боковой поверхностью пирамиды , а объединение всех граней называется полной поверхностью пирамиды . Тогда площадью боковой поверхности пирамиды называется сумма площадей ее боковых граней. А площадью полной поверхности пирамиды называется сумма площадей всех ее граней.

Пирамида в зависимости от того какой многоугольник лежит в основании имеет свое название. Если в основании лежит треугольник, то пирамида называется треугольной. Если четырехугольник – то четырехугольной пирамидой. А если n-угольник, то n-угольной пирамидой.

Решим задачу.

Задача. Основанием пирамиды является ромб, сторона которого равна , а одна из диагоналей равна . Найти длину боковых ребер пирамиды, если высота пирамиды проходит через точку пересечения диагоналей основания и равна .

Решение.

Ответ. , см.

Давайте дадим определение правильной пирамиды.

Пирамида называется правильной , если ее основание – правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой. Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .

На сегодняшнем уроке мы подробно рассмотрим правильные пирамиды.

Сейчас давайте попробуем доказать одно из свойств правильной пирамиды . А именно докажем, что все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Рассмотрим правильную пирамиду PA 1 A 2 …A n . Сначала докажем, что все боковые ребра этой пирамиды равны. Проведем высоту пирамиды.

Поскольку основанием правильной пирамиды является правильный многоугольник, значит, вокруг основания правильной пирамиды можно описать окружность. Тогда каждое боковое ребро пирамиды есть ничто иное, как гипотенуза прямоугольного треугольника, одним катетом которого служит высота PO пирамиды, а другим – радиус описанной около основания окружности. Например, если рассмотреть треугольник OPA 1 , то OP равно h, OA 1 равно R.

Таким образом, мы доказали, что боковые ребра правильной пирамиды равны. А значит, боковые грани правильной пирамиды – это равнобедренные треугольники. Поскольку в основании лежит правильный многоугольник, значит, основания боковых граней равны между собой. То есть боковые грани равны между собой по трем сторонам.

Что и требовалось доказать.

Теперь давайте сформулируем и докажем теорему о площади боковой поверхности правильной пирамиды.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Доказательство.

Запишем формулу для вычисления площади боковой поверхности правильной пирамиды.

Мы уже доказали, что боковые грани правильной пирамиды – равные равнобедренные треугольники. Высоты этих треугольников равны апофеме пирамиды. Тогда площадь боковой грани находится по формуле .

Подставим эти площади в формулу площади боковой поверхности. Вынесем половину апофемы за скобки, тогда в скобках получим периметр основания.

Нам хорошо известны великие египетские пирамиды, каждый может представить себе, как они выглядят. Это представление и поможет нам разобраться в особенностях такой геометрической фигуры, как пирамида.

Пирамида – это многогранник, состоящий из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, – вершины пирамиды и всех отрезков, соединяющих вершину с точками основания. Отрезки, которые соединяют вершину пирамиды с вершинами основания, называются боковыми рёбрами. На рис. 1 изображена пирамида SABCD. Четырёхугольник ABCD – основание пирамиды, точка S – вершина пирамиды, отрезки SA, SB, SC и SD – рёбра пирамиды.

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания. На рис. 1 SO – высота пирамиды.

Пирамида называется n-угольной, если её основанием является n-угольник. На рисунке 1 изображена четырёхугольная пирамида. Треугольная пирамида называется тетраэдром.

Пирамида называется правильной, если её основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Боковые рёбра у правильной пирамиды равны, а, следовательно, боковые грани являются равнобедренными треугольниками. В правильной пирамиде высота боковой грани, проведённая из вершины пирамиды, называется апофемой.

Пирамида обладает рядом свойств.

Все диагонали пирамиды принадлежат её граням.

Если все боковые ребра равны, то:

  • около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые ребра образуют с плоскостью основания равные углы, и, наоборот, если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Рассмотрим формулы для нахождения объёма, площади поверхности пирамиды.

Объём пирамиды можно вычислить по следующей формуле:

где S – площадь основания, а h – высота.

Чтобы найти площадь полной поверхности пирамиды, необходимо воспользоваться формулой:

S p = S b + S o ,

где S p – площадь полной поверхности, S b – площадь боковой поверхности, S o – площадь основания.

Усечённой пирамида – это многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Грани усечённой пирамиды, лежащие в параллельных плоскостях, называются основаниями усечённой пирамиды, остальные грани называются боковыми гранями. Основаниями усечённой пирамиды являются подобные многоугольники, боковыми гранями – трапеции. Усечённая пирамида, которая получается из правильной пирамиды, называется правильной усечённой пирамидой. Боковые грани правильной усечённой трапеции представляют собой равные равнобокие трапеции, их высоты называются апофемами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Введение

Когда мы начали изучать стереометрические фигуры мы затронули тему «Пирамида». Нам понравилась это тема, потому что пирамида очень часто употребляется в архитектуре. И так как наша будущая профессия архитектора, вдохновившись этой фигурой, мы думаем, что она сможет подтолкнуть нас к отличным проектам.

Прочность архитектурных сооружений, важнейшее их качество. Связывая прочность, во-первых, с теми материалами, из которых они созданы, а, во-вторых, с особенностями конструктивных решений, оказывается, прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой.

Другими словами, речь идет о той геометрической фигуре, которая может рассматриваться как модель соответствующей архитектурной формы. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения.

Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.

Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.



Цель проекта : узнать что-то новое о пирамидах, углубить знания и найти практическое применение.

Для достижения поставленной цели потребовалось решить следующие задачи:

· Узнать исторические сведения о пирамиде

· Рассмотреть пирамиду, как геометрическую фигуру

· Найти применение в жизни и архитектуре

· Найти сходство и различие пирамид, расположенных в разных частях света


Теоретическая часть

Исторические сведения

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

Усыпальницы египетских фараонов. Крупнейшие из них - пирамиды Хеопса, Хефрена и Микерина в Эль-Гизе в древности считались одним из Семи чудес света. Возведение пирамиды, в котором уже греки и римляне видели памятник невиданной гордыни царей и жестокости, обрекшей весь народ Египта на бессмысленное строительство, было важнейшим культовым деянием и должно было выражать, по всей видимости, мистическое тождество страны и ее правителя. Население страны работало на строительстве гробницы в свободную от сельскохозяйственных работ часть года. Ряд текстов свидетельствует о том внимании и заботе, которые сами цари (правда, более позднего времени) уделяли возведению своей гробницы и ее строителям. Известно также об особых культовых почестях, которые оказывались самой пирамиде.


Основные понятия

Пирамидой называется многогранник, основание которого – многоугольник, а остальные грани – треугольники, имеющие общую вершину.

Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины;

Боковые грани - треугольники, сходящиеся в вершине;

Боковые ребра - общие стороны боковых граней;

Вершина пирамиды - точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота - отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды - сечение пирамиды, проходящее через вершину и диагональ основания;

Основание - многоугольник, которому не принадлежит вершина пирамиды.

Основные свойства правильной пирамиды

Боковые ребра, боковые грани и апофемы соответственно равны.

Двугранные углы при основании равны.

Двугранные углы при боковых ребрах равны.

Каждая точка высоты равноудалена от всех вершин основания.

Каждая точка высоты равноудалена от всех боковых граней.


Основные формулы пирамиды

Площадь боковой и полной поверхности пирамиды.

Площадью боковой поверхности пирамиды (полной и усечённой) называется сумма площадей всех ее боковых граней, площадью полной поверхности – сумма площадей всех ее граней.

Теорема: Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

p - периметр основания;

h - апофема.

Площадь боковой и полной поверхностей усеченной пирамиды.

p 1 , p 2 - периметры оснований;

h - апофема.

Р - площадь полной поверхности правильной усеченной пирамиды;

S бок - площадь боковой поверхности правильной усеченной пирамиды;

S 1 + S 2 - площади основания

Объем пирамиды

Формула объёма используется для пирамид любого вида.

H - высота пирамиды.


Углы пирамиды

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол образуется двумя перпендикулярами.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах .

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания .

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды .


Сечения пирамиды

Поверхность пирамиды – это поверхность многогранника. Каждая ее грань представляет собой плоскость, поэтому сечение пирамиды, заданной секущей плоскостью – это ломаная линия, состоящая из отдельных прямых.

Диагональное сечение

Сечение пирамиды плоскостью, проходящей через два боковых ребра, не лежащих на одной грани, называется диагональным сечением пирамиды.

Параллельные сечения

Теорема :

Если пирамида пересечена плоскостью, параллельной основанию, то боковые ребра и высоты пирамиды делятся этой плоскостью на пропорциональные части;

Сечением этой плоскости является многоугольник, подобный основанию;

Площади сечения и основания относятся друг к другу как квадраты их расстояний от вершины.

Виды пирамиды

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, и вершина пирамиды проектируется в центр основания.

У правильной пирамиды:

1. боковые ребра равны

2. боковые грани равны

3. апофемы равны

4. двугранные углы при основании равны

5. двугранные углы при боковых ребрах равны

6. каждая точка высоты равноудалена от всех вершин основания

7. каждая точка высоты равноудалена от всех боковых граней

Усеченная пирамида – часть пирамиды, заключенная между ее основанием и секущей плоскостью, параллельной основанию.

Основание и соответствующие сечение усеченной пирамиды называются основаниями усеченной пирамиды .

Перпендикуляр, проведенный из какой-либо точки одного основания на плоскость другого, называется высотой усеченной пирамиды.


Задачи

№1. В правильной четырехугольной пирамиде точка О – центр основания, SO=8 cм, BD=30 см. Найдите боковое ребро SA.


Решение задач

№1. В правильной пирамиде все грани и ребра равны.

Рассмотрим OSB: OSB-прямоугольный прямоугольник, т. к.

SB 2 =SO 2 +OB 2

SB 2 =64+225=289

Пирамида в архитектуре

Пирамида - монументальное сооружение в форме обычной правильной геометрической пирамиды, в которой боковые стороны сходятся в одной точке. По функциональному назначению пирамиды в древности были местом захоронения или поклонения культу. Основа пирамиды может быть треугольной, четырехугольной или в форме многоугольника с произвольным числом вершин, но наиболее распространенной версией является четырехугольная основа.

Известно немалое количество пирамид, построенных разными культурами Древнего мира в основном в качестве храмов или монументов. К крупным пирамидам относятся египетские пирамиды.

По всей Земле можно увидеть архитектурные сооружения в виде пирамид. Здания-пирамиды напоминают о древних временах и очень красиво выглядят.

Египетские пирамиды величайшие архитектурные памятники Древнего Египта, среди которых одно из «Семи чудес света» пирамида Хеопса. От подножия до вершины она достигает 137, 3 м, а до того, как утратила верхушку, высота ее была 146, 7 м

Здание радиостанции в столице Словакии, напоминающее перевернутую пирамиду, было построено в 1983 г. Помимо офисов и служебных помещений, внутри объема находится достаточно вместительный концертный зал, который имеет один из самых больших органов в Словакии.

Лувр, который "молчит неизменно и величественно, как пирамида" на протяжении веков перенёс немало изменений прежде, чем превратиться в величайший музей мира. Он родился как крепость, воздвигнутая Филиппом Августом в 1190 г., вскоре превратившаяся в королевскую резиденцию. В 1793 г. дворец становится музеем. Коллекции обогащаются благодаря завещаниям или покупкам.