Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

Вдыхаемый воздух содержит настолько малое количество двуокиси углерода, что им можно пренебречь. Таким образом, вся двуокись углерода поступает в выды­хаемый газ из альвеол, куда она попадает из капилляров малого круга кровообраще­ния. Во время выдоха "загруженный" двуокисью углерода альвеолярный газ разво­дится газом мертвого пространства. Это приводит к падению концентрации двуоки­си углерода в выдыхаемом газе по сравнению с таковой в альвеолярном (мертвое пространство понимается здесь как физиологическое, а не анатомми^™^ ьг~.....

Рис. 3-2. Типы мертвого пространства. (А) Л патом и ч ее кос. В обеих единицах кровоток соответ­ствует распределении) вентиляции. Единственными областями, где газообмен не происходит, явля­ются проводящие ВП (затушевано). Отсюда все мертвое пространство в этой модели является анатомическим. Кровь легочных вен полностью оксигенирована. (Б) Физиологическое. В одной единице вентиляция сопряжена с кровотоком (правая единица), в другой (левая единица) кровоток отсутствует. В этой модели физиологическое мертвое пространство включает анатомическое и пспсрфузируемую область легких. Кровь легочных вен оксигепирована частично.

зуя простое уравнение равновесия масс можно рассчитать отношение физиологичес­кого мертвого пространства к дыхательному объему, Vl)/vt.

Общее количество двуокиси углерода (СО 2) в дыхательной системе в любой момент времени представляет собой произведение первоначального объема, в кото­ром содержался СО 2 (альвеолярный объем), и концентрации СО 2 в альвеолах.

Альвеолы содержат смесь газов, включающую О 2 , СО 2 , N 2 и водяной пар. Каж­дый из них обладает кинетической энергией, создавая тем самым давление (парци­альное давление). Альвеолярная концентрация СО 2 рассчитывается как парциальное давление альвеолярного СО 2 , деленное на сумму парциальных давлений газов и во­дяного пара в альвеолах (гл. 9). Поскольку сумма парциальных давлений в альвеолах равна барометрическому давлению, альвеолярное содержание СО 2 может быть рас­считано как:

расо Альвеолярное содержание СО 2 = vax------- 2 - ,

где: va - альвеолярный объем,

РАСО 2 - парциальное давление СО 2 в альвеолах, Рв - барометрическое давление.

Общее количество СО 2 остается тем же самым после того, как альвеолярный СО 2 смешается с газом мертвого пространства. Поэтому, количество СО 2 , выделяе­мое при каждом выдохе, может быть рассчитано как:

Vrx^L-VAx*^,

где: РЁСО 2 - среднее парциальное давление СО 2 в выдыхаемом газе. Уравнение может быть записано более просто как:

VT х РЁСО? = VA x РАС0 2 .

Уравнение показывает, что количество СО 2> выделяемое при каждом выдохе и определяемое как произведение дыхательного объема и парциального давления СО 2 в выдыхаемом газе, равно количеству СО 2 в альвеолах. СО 2 не теряется и не добав­ляется к газу, поступающему в альвеолы из легочного кровообращения; просто пар­циальное давление СО 2 в выдыхаемом воздухе (РИс() 2) устанавливается на новом уровне в результате разведения газом физиологического мертвого пространства. Заменяя VT в уравнении на (VD + va), получаем:

(VD + va) х РЁСО 2 = va х Рдсо 2 .

Преобразование уравнения заменой Уд на (Ут - У D) дает:

УР = УТХ РАС °*- РЁС °*. ГЗ-8]

Уравнение может быть выражено в более общем виде:

vd РАСО 2 -РЁсо 2

= -----^----------l

Уравнение , известное как уравнение Бора, показывает, что отношение мер­твого пространства к дыхательному объему может быть рассчитано как частное от деления разности РС() 2 альвеолярного и выдыхаемого газов на альвеолярное РС() 2 . Поскольку альвеолярное РС() 2 практически совпадает с артериальным Рсо 2 (РаС() 2), Vo/Ут может быть рассчитано с помощью одновременного измерения Рсо 2 в про­бах артериальной крови и выдыхаемого газа.

Как пример для расчета, рассмотрим данные здорового человека, чья минутная вентиляция (6 л/мин) достигалась при дыхательном объеме 0.6 л и частоте дыхания 10 дых/мин. В пробе артериальной крови РаС() 2 равнялось 40 мм рт. ст., а в пробе выдыхаемого газа РЕСО, - 28 мм рт. ст. Вводя эти величины в уравнение , получаем:

У°Л°_--?в = 0.30 VT 40

Мертвое пространство эо

Отсюда У D составляет (0.30 х 600 мл) или 180 мл, а У А равняется (600 iv./i 180 мл) или 420 мл. У любого взрослого здорового человека У 0/У"Г колеблется от 0.30 до 0.35.

Влияние вентиляторного паттерна на vd/vt

В предыдущем примере дыхательный объем и частота дыхания были точно у ка заны, что позволило вычислить VD и УА после того, как была определена вел ичи на УD/VT. Рассмотрим что произойдет, когда здоровый человек массой 70 кг" на ки ь -зует" три различных дыхательных паттерна для поддержания одной и топ же минут­ной вентиляции (рис. 3-3).

На рис. 3-ЗА VE составляет 6 л/мин, Ут - 600 мл и f - 10 дых/мин. У человека массой 70 кг объем мертвого пространства равен примерно 150 мл. Кате было отмече­но ранее, 1 мл мертвого пространства приходится на один фунт веса тела. Отсюда VI) равняется 1500 мл (150x10), va -4500 мл (450x10), a VD/VT- 150/600 пли 0.25.

Испытуемый увеличил частоту дыхания до 20 дых/мин (рис, 3-ЗБ). Нслн \поддерживалась на прежнем уровне 6 л/мин, то Ут будет равен 300 мл. П;>и У г> ь 150 мл vd и УА достигают 3000 мл/мин. УD/УТ увеличится до 150/300 или 0.5. Это г частый поверхностный дыхательный паттерн представляется неэффективным с точ

Рис. 3-3. Влияние дыхательного паттерна на объем мертвого пространства, неличину альнеспярпои иептиляции и Vn/V"r. Мертвое пространство обозначено затушеванной площадь!") В каждом слу­чае минутная вентиляция составляет 6 л/мин; дыхательная система показала i> коип.е идг.ха. (А) Дыхательный объем равен 600 мл, частота дыхания - 10 дых/мин. (Б) Дыхательный объгм;;,иик-уменьшен, а частота дыхания вдвое увеличена. (В) Дыхательный объем удвоен, а частота ди\аш<ч

11..,..,.,.,^, .,., ., м. г, 4 Mitii\rrii4u kpim и MvnilHI ОГТЛГКМ ПОСТОЯННОМ, OT".IOMICilMc М"Ч"

ки зрения выведения СО 2 , поскольку половина каждого вдоха вентилирует мертво пространство.

Наконец, VT увеличился до 1200мл, а частота дыхания снизилась д 5 дых/мин (рис. 3-3 В).

Vli! осталась прежней -- 6 л/мин, vd понизилась д< 750 мл/мин, a va повысилась до 5250 мл/мин. VD/VT уменьшилось до 150/1201 или 0.125. Во всех трех примерах общая вентиляция оставалась без изменений, од нако заметно отличалась альвеолярная вентиляция. Из дальнейшего обсуждение станет ясно, что альвеолярная вентиляция является определяющим фактором ско рости выделения СО 2 .

Отношение между альвеолярной вентиляцией и скоростью образования СО 2

Скорость образования СО 2 (Vco 2) у здорового человека массой 70 кг в состоя­нии покоя составляет около 200 мл в 1 мин. Система регуляции дыхания "установ­лена" на поддержание РаС() 2 на уровне 40 мм рт. ст. (гл. 16). В устойчивом состоянии скорость, с которой СО 2 выводится из организма, равна скорости ее образования. Отношение между РаС() 2 , VCO 2 и VA приведено ниже:

VA = Kx-^- l

где: К - константа, равная 0.863; VA выражена в системе BTPS, a Vco 2 -в систе­ме STPD (приложение 1, с. 306).

Уравнение показывает, что при постоянной скорости образования дву­окиси углерода РаСО- изменяется обратно пропорционально альвеолярной вентиля­ции (рис. 3-4). Зависимость РЛС() 2 , а отсюда и РаС() 2 (тождество которых обсужда­ется в гл. 9 и 13) от va можно оценить с помощью рис. 3-4. В действительности изменения Рсо 2 (альвеолярного ил и артериального) определяются отношением меж­ду \/д и vk,t. e. величиной VD/VT (раздел "Расчет объема физиологического мер­твого пространства"). Чем выше VD/VT, тем большая Vi<; необходима для измене­ния Уд и РаСО;,.

Отношение между альвеолярной вентиляцией, альвеолярным Ро 2 и альвеолярным Рсо 2

Подобно тому, как Рлсо 2 определяется балансом между продукцией СО 2 и аль­веолярной вентиляцией, альвеолярное Р() 2 (Р/\() 2) является функцией скорости по­глощения кислорода через альвеолярно-капиллярную мембрану (гл. 9) и альвеоляр-

Рис. 3-4. Соотношение между аль­веолярной вентиляцией и альвео­лярным Рш,. Альвеолярное Рсо, на­ходится в обратной зависимости от альвеолярной вентиляции. Степень вокдсйс"пжя изменении милу гной вентиляции на альвеолярное Рс:о, :;апмсит от отношения между венти­ляцией мертвого пространства и об­щей вентиляцией. Представлено от­ношение дли человека среднего сло­жения со стабильной нормальной скоростью образования (."О,- (около 200 м ч/мип)

пой вентиляции.

Поскольку парциальные давления азота и водяного пара в альвео­лах постоянны, РА() 2 и РЛС() 2 изменяются реципрокно по отношению друг к другу в зависимости от изменений альвеолярной вентиляции. Рис. 3-5 показывает рост рао, по мере увеличения VA.

Сумма парциальных давлений О 2 , СО 2 , N: > и водяного пара в альвеолах равна барометрическому давлению. Поскольку парциальные давления азота и водяного пара постоянны, парциальное давление О 2 либо СО^ может быть рассчитано, если одно из них известно. Расчет основывается на уравнении альвеолярного газа:

рао? = Рю? - Рдсо 2 (Fio 2 + ---),

где: РЮ 2 - Ро 2 во вдыхаемом газе,

FlO 2 - фракционная концентрация О 2 во вдыхаемом газе,

R - дыхательное газообменное отношение.

R, дыхательное газообменное отношение, выражает скорость выделения СО^ относительно скорости поглощения О 2 (V() 2), т. e. R = Vco 2 / V(> 2 . В устойчивом состоянии организма дыхательное газообменное отношение равно дыхательному ко­эффициенту (RQ), который описывает отношение продукции двуокиси углерода к потреблению кислорода на клеточном уровне. Это отношение зависит от того, что преимущественно используется в организме в качестве источников энергии - угле­воды или жиры. В процессе метаболизма 1 г углеводов выделяется больше СО 2 .

В соответствии с уравнением альвеолярного газа РЛ() 2 может быть рассчи­тано как парциальное давление О 2 во вдыхаемом газе (РЮ 2) минус величина, кото­рая включает РЛСО 2 и фактор, учитывающий изменение общего объема газа, если поглощение кислорода отличается от выделения двуокиси углерода: [ Fl() 2 + (1 -- Fl() 2)/RJ. У здорового взрослого человека со средними размерами тела в состоянии покоя V() 2 составляет около 250 мл/мин; VCO 2 - приблизительно 200 мл/мин. R, таким образом, равно 200/250 или 0.8. Заметим, что величина IFlO, + (1 - FlO 2)/RJ снижается до 1.2, когда FlOz^ 0.21, и до 1.0 при FlOa» 1.0 (если в каждом случае R = 0.8).

Как пример для расчета РЛ() 2 , рассмотрим здорового человека, который дышит комнатным воздухом и у которого РаС() 2 (приблизительно равное РЛС() 2) составля­ет 40 мм рт. ст. Принимаем барометрическое давление равным 760 мм рт. ст. и дав­ление водяного пара - 47 мм рт. ст. (вдыхаемый воздух полностью насыщается во­дой при нормальной температуре тела). Рю 2 рассчитывается как произведение об­щего парциального давления "сухих" газов в альвеолах и фракционной концентра­ции кислорода: т. е. Рю 2 = (760 - 47) х 0.21. Отсюда Рло 2 = [(760 - 47) х 0.21 J -40 = 149-48= 101 мм. рт. ст.

Рис. 3-5. Соотношение между альвеолярной вентиляцией иаль-иеолярным Ро, Альвеолярное 1 } () 2 растет с увеличением альве­олярной вентиляции до достиже­ния плато

Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно дыхательному объему, умноженному на частоту дыхания. В норме дыхательный объем составляет приблизительно 500 мл, а частота дыхания -- 12 раз в минуту.

Таким образом, в норме вентиляционный минутный объем в среднем составляет около 6 л. При снижении минутной вентиляции до 1,5 л и уменьшении частоты дыхания до 2--4 в 1 мин человек может жить лишь очень непродолжительное время, если только у него не разовьется сильное угнетение метаболических процессов, как это бывает при глубокой гипотермии.

Частота дыхания иногда возрастает до 40--50 дыханий в минуту, а дыхательный объем может достигать величины, близкой к жизненной емкости легких (около 4500--5000 мл у молодых здоровых мужчин). Однако при большой частоте дыхания человек обычно не может поддерживать дыхательный объем на уровне, превышающем 40 % жизненной емкости легких (ЖЕЛ), в течение нескольких минут или часов.

Альвеолярная вентиляция

Основной функцией системы легочной вентиляции является постоянное обновление воздуха в альвеолах, где он вступает в тесный контакт с кровью в легочных капиллярах. Скорость, с которой вновь поступивший воздух достигает указанной области контакта, называется альвеолярной вентиляцией. При нормальной, спокойной вентиляции дыхательный объем заполняет дыхательные пути вплоть до терминальных бронхиол, и лишь небольшая часть вдыхаемого воздуха проходит весь путь и контактирует с альвеолами. Новые порции воздуха преодолевают короткую дистанцию от терминальных бронхиол до альвеол путем диффузии. Диффузия обусловлена передвижением молекул, причем молекулы каждого газа перемещаются с большой скоростью среди других молекул. Скорость движения молекул во вдыхаемом воздухе настолько велика, а расстояние от терминальных бронхиол до альвеол столь мало, что газы преодолевают это оставшееся расстояние в считанные доли секунды.

Мертвое пространство

Обычно не менее 30 % вдыхаемого человеком воздуха никогда не достигает альвеол. Этот воздух называют воздухом мертвого пространства, так как он бесполезен для процесса газообмена. В норме мертвое пространство у молодого мужчины с дыхательным объемом в 500 мл составляет примерно 150 мл (около 1 мл на 1 фунт массы тела), или приблизительно 30 % дыхательного объема.

Объем дыхательных путей, проводящих вдыхаемый воздух до места газообмена, называется анатомическим мертвым пространством. Иногда, однако, некоторые альвеолы не функционируют из-за недостаточного притока крови к легочным капиллярам. С функциональной точки зрения эти альвеолы без капиллярной перфузии рассматриваются как патологическое мертвое пространство.

С учетом альвеолярного (патологического) мертвого пространства общее мертвое пространство называют физиологически мертвым пространством. У здорового человека анатомическое и физиологическое мертвое пространство практически одинаковы по объему, так как все альвеолы функционируют. Однако у лиц с плохо перфузируемыми альвеолами общее (или физиологическое) мертвое пространство может превышать 60 % дыхательного объема.

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей (рис. 1.3 и 1.4). В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой лег­ких. Объем мертвого пространства зависит также от размеров тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в милли­литрах массе тела в фунтах (1 фунт ==453,6 г).

Объем анатомического мертвого пространства можно из­мерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забираю­щего воздух из трубки, начинающейся у рта (рис. 2.6, Л). Когда после вдыхания 100% Оа человек делает выдох, содер­жание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным. В конце выдоха реги­стрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным “плато”, хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методезаписывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А (см. рис. 2.6,5) была равна пло­щади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до “сред­ней точки” перехода от мертвого пространства к альвеоляр­ному воздуху.

Рис. 2.6. Измерение объема анатомического мертвого пространства с помощью быстродействующего анализатора N2 по методу Фаулера. А. Пос­ле вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади А и Б равны

Функциональное мертвое пространство

Измерить объем мертвого пространства можно также ме­тодом Бора. Из ри2с. 2.5 видно, что выдыхаемый СО 2 посту­пает из альвеолярного воздуха, а не из воздуха мертвого про­странства. Отсюда

vt х-fe==va х fa.

Поскольку

v t = v a + v d ,

v a =v t -v d ,

после подстановки получаем

V T х F E=(V T- V D)- F A,

следовательно,

Поскольку парциальное давление газа пропорционально его содержанию, запишем

(уравнение Бора),

где А и Е относятся к альвеолярному и смешанному выдыхае­мому воздуху соответственно (см. приложение). При спокой­ном дыхании отношение объема мертвого пространства к ды­хательному объему в норме равно 0,2-0,35. У здоровых людей Рсо2 в альвеолярном воздухе и артериальной крови практически одинаковы, поэтому мы можем записать урав­нение Бора следующим образом:

аср2 "СО-г ^СОг

Необходимо подчеркнуть, что методами Фаулера и Бора измеряют несколько различные показатели. Первый метод дает объем проводящих дыхательных путей вплоть до того уровня, где поступающий при вдохе воздух быстро смеши­вается с уже находившимся в легких. Этот объем зависит от геометрии быстро ветвящихся с увеличением суммарного се­чения дыхательных путей (см. рис. 1.5) и отражает строение респираторной системы. В связи с этим его называют анато­мическим мертвым пространством. По методу же Бора опре­деляется объем тех отделов легких, в которых не происходит удаление СОа из крови; поскольку этот показатель связан с работой органа, он называется функциональным (физиоло­гическим) мертвым пространством. У здоровых лиц эти объ­емы практически одинаковы. Однако у больных с пораже­ниями легких второй показатель может значительно превы­шать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких (см. гл. 5).


Анатомическое мертвое пространство - это часть дыхательной системы, в которой нет значительного газообмена. Анатомическое мертвое пространство составляют воздухопроводящие пути, а именно носоглотка, трахея, бронхи и бронхиолы вплоть до их перехода в альвеолы. Заполняющий их объем воздуха называется объемом мертвого пространства ^Б). Объем мертвого пространства является величиной переменной и у взрослых составляет около 150200 мл (2 мл/кг массы тела). В этом пространстве не происходит га- зообмен, а указанные структуры выполняют вспомогательную роль по согреванию, увлажнению и очистке вдыхаемого воздуха.
Функгциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают те участки легких, в которых не происходит газообмен. В отличие от анатомического, к функциональному мертвому пространству относятся также альвеолы, которые вентилируются, но не перфузируются кровью. Суммарно это называется альвеолярным мертвым пространством. В здоровых легких количество таких альвеол невелико, поэтому объемы мертвого анатомического и физиологического пространства отличаются мало. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и перфузируются кровью неравномерно, объем функционального мертвого пространства может оказаться значительно больше анатомического. Таким образом, функциональное мертвое пространство представляет сумму анатомического и альвеолярного мертвого пространства: Тфунк. = Танат. + Тальвеол. Вентиляция увеличение без = функционального перфузии мертвого пространства
Соотношение объема мертвого пространства (VD). к дыхательному объему ^Т) - это коэффициент мертвого пространства (VD/VТ). В норме вентиляция мертвого пространства составляет 30% от дыхательного объема и альвеолярная вентиляция - около 70%. Таким образом, коэффициент мертвого пространства VD/VТ = = 0,3. При повышении коэффициента мертвого пространства до 0,70,8 длительное спонтанное дыхание невозможно, поскольку увеличивается дыхательная работа и СOJ накапливается в большем количестве, чем может быть удалено. Регистрируемое увеличение коэффициента мертвого пространства свидетельствует о том, что в отдельных участках легкого перфузия практически прекратилась, но этот участок по-прежнему вентилируется.
Вентиляция мертвого пространства оценивается за минуту и зависит от величины мертвого пространства (УЭ) и частоты дыхания, возрастая с ней линейно. Возрастание вентиляции мертвого пространства может компенсироваться увеличением дыхательного объема. Важным является результирующий объем альвеолярной вентиляции ^А), который фактически поступает в альвеолы за минуту и вовлекается в газообмен. Он может быть рассчитан следующим образом: VA = (VI - VD)F, где VA - объем альвеолярной вентиляции; VI - дыхательный объем; VD - объем мертвого пространства; F - частота дыхания.
Функциональное мертвое пространство может быть рассчитано по следующей формуле:
VDфунк. = VT(1 - РМТ С02/раС02), где VI - дыхательный объем; РМТ С02 - содержание С02 в выдыхаемом воздухе; раС02 - парциальное давление С02 в артериальной крови.
Для приблизительной оценки значения РМТ С02 может быть использовано парциальное давление С02 в выдыхаемой смеси вместо содержания С02 в выдыхаемом воздухе.
Тфунк. = VT(1 - рЕС02/раС02), где рЕС02 - парциальное давление С02 в конце выдоха.
Пример. Если у пациента с весом 75 кг частота дыхания 12 в минуту, дыхательный объем - 500 мл, то МОД составляет 6 л, из которых вентиляция мертвого пространства - 12 150 мл (2 мл/кг), т.е. 1800 мл. Коэффициент мертвого пространства составляет 0,3. Если у такого пациента частота дыхания будет 20 в минуту, а после-операционный ДО (VI) 300 мл, то минутный объем дыхания будет равен 6 л, при этом вентиляция мертвого пространства возрастет до 3 л (20 150 мл). Коэффициент мертвого пространства составит 0,5. При увеличении частоты дыхания и уменьшении ДО вентиляция мертвого пространства возрастает за счет уменьшения альвеолярной вентиляции. Если дыхательный объем не изменяется, то возрастание частоты дыхания приводит к увеличению дыхательной работы. После операции, особенно после лапаротомии или торакотомии, коэффициент мертвого пространства приблизительно составляет 0,5 и может возрастать до 0,55 в первые 24 часа.

Еще по теме Мертвое пространство вентиляции:

  1. Особенности вентиляции у новорожденных и детей раннего возраста Показания к вентиляционной поддержке и основные принципы механической вентиляции у новорожденных и детей