Сила трения в земных условиях сопутствует любым движениям тел. Она возникает при соприкосновении двух тел, если эти тела двигаются относительно друг друга. Направлена сила трения всегда вдоль поверхности соприкосновения, в отличие от силы упругости, которая направлена перпендикулярно (рис. 1, рис. 2).

Рис. 1. Отличие направлений силы трения и силы упругости

Рис. 2. Поверхность действует на брусок, а брусок – на поверхность

Существуют сухие и не сухие виды трения. Сухой вид трения возникает при соприкосновении твердых тел.

Рассмотрим брусок, лежащий на горизонтальной поверхности (рис. 3). На него действуют сила тяжести и сила реакции опоры . Подействуем на брусок с небольшой силой , направленной вдоль поверхности. Если брусок не сдвигается с места, значит, приложенная сила уравновешивается другой силой, которая называется силой трения покоя .

Рис. 3. Сила трения покоя

Сила трения покоя () противоположна по направлению и равна по модулю силе, стремящейся сдвинуть тело параллельно поверхности его соприкосновения с другим телом.

При увеличении «сдвигающей» силы брусок остается в покое, следовательно, сила трения покоя также увеличивается. При некоторой, достаточно большой, силе брусок придет в движение. Это означает, что сила трения покоя не может увеличиваться до бесконечности – существует верхний предел, больше которого она быть не может. Величина этого предела – максимальная сила трения покоя.

Подействуем на брусок с помощью динамометра.

Рис. 4. Измерение силы трения с помощью динамометра

Если динамометр действует на него с силой , то можно увидеть, что максимальная сила трения покоя становится больше при увеличении массы бруска, то есть при увеличении силы тяжести и силы реакции опоры. Если провести точные измерения, то они покажут, что максимальная сила трения покоя прямо пропорциональна силе реакции опоры:

где – модуль максимальной силы трения покоя; N – сила реакции опоры (нормального давления); – коэффициент трения покоя (пропорциональности). Следовательно, максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Если провести опыт с динамометром и бруском постоянной массы, при этом переворачивая брусок на разные стороны (меняя площадь соприкосновения со столом), то можно увидеть, что максимальная сила трения покоя не меняется (рис. 5). Следовательно, от площади соприкосновения максимальная сила трения покоя не зависит.

Рис. 5. Максимальное значение силы трения покоя не зависит от площади соприкосновения

Более точные исследования показывают, что трение покоя полностью определяется приложенной к телу силой и формулой .

Сила трения покоя не всегда препятствует движению тела. Например, сила трения покоя действует на подошву обуви, при этом сообщая ускорение и позволяя ходить по земле без проскальзывания (рис. 6).

Рис. 6. Сила трения покоя, действующая по подошву обуви

Еще один пример: сила трения покоя, действующая на колесо автомобиля, позволяет начинать движение без пробуксовки (рис. 7).

Рис. 7. Сила трения покоя, действующая на колесо автомобиля

В ременных передачах также действует сила трения покоя (рис. 8).

Рис. 8. Сила трения покоя в ременных передачах

Если тело движется, то сила трения, действующая на него со стороны поверхности, не исчезает, такой вид трения называется трение скольжения . Измерения показывают, что сила трения скольжения по величине практически равна максимальной силе трения покоя (рис. 9).

Рис. 9. Сила трения скольжения

Сила трения скольжения всегда направлена против скорости движения тела, то есть она препятствует движению. Следовательно, при движении тела только под действием силы трения она сообщает ему отрицательное ускорение, то есть скорость тела постоянно уменьшается.

Величина силы трения скольжения также пропорциональна силе нормального давления.

где – модуль силы трения скольжения; N – сила реакции опоры (нормального давления); – коэффициент трения скольжения (пропорциональности).

На рисунке 10 изображен график зависимости силы трения от приложенной силы. На нем видно два различных участка. Первый участок, на котором сила трения возрастает при увеличении приложенной силы, соответствует трению покоя. Второй участок, на котором сила трения не зависит от внешней силы, соответствует трению скольжения.

Рис. 10. График зависимости силы трения от приложенной силы

Коэффициент трения скольжения приблизительно равен коэффициенту трения покоя. Обычно коэффициент трения скольжения меньше единицы. Это означает, что сила трения скольжения по величине меньше силы нормального давления.

Коэффициент трения скольжения является характеристикой двух трущихся друг о друга тел, он зависит от того, из каких материалов изготовлены тела и насколько хорошо обработаны поверхности (гладкие или шероховатые).

Происхождение сил трения покоя и скольжения обуславливается тем, что любая поверхность на микроскопическом уровне не является плоской, на любой поверхности всегда присутствуют микроскопические неоднородности (рис. 11).

Рис. 11. Поверхности тел на микроскопическом уровне

Когда два соприкасающихся тела подвергаются попытке перемещения относительно друг друга, эти неоднородности зацепляются и препятствуют этому перемещению. При небольшой величине приложенной силы этого зацепления достаточно для того, чтобы не позволить телам смещаться, так возникает трение покоя. Когда внешняя сила превосходит максимальное трение покоя, то зацепления шероховатостей недостаточно для удержания тел, и они начинают смещаться относительно друг друга, при этом между телами действует сила трения скольжения.

Данный вид трения возникает при перекатывании тел друг по другу или при качении одного тела по поверхности другого. Трение качения, как и трение скольжения, сообщает телу отрицательное ускорение.

Возникновение силы трения качения обусловлено деформацией катящегося тела и опорной поверхностью. Так, колесо, расположенное на горизонтальной поверхности, деформирует последнюю. При движении колеса деформации не успевают восстановиться, поэтому колесу приходится как бы все время взбираться на небольшую горку, из-за чего появляется момент сил, тормозящий качение.

Рис. 12. Возникновение силы трения качения

Величина силы трения качения, как правило, во много раз меньше силы трения скольжения при прочих равных условиях. Благодаря этому качение является распространенным видом движения в технике.

При движении твердого тела в жидкости или газе на него действует со стороны среды сила сопротивления. Эта сила направлена против скорости тела и тормозит движение (рис. 13).

Главная особенность силы сопротивления заключается в том, что она возникает только при наличии относительного движения тела и окружающей его среды. То есть силы трения покоя в жидкостях и газах не существует. Это приводит к тому, что человек может сдвинуть даже тяжелую баржу, находящуюся на воде.

Рис. 13. Сила сопротивления, действующая на тело при движении в жидкости или газе

Модуль силы сопротивления зависит:

От размеров тела и его геометрической формы (рис. 14);

Состояния поверхности тела (рис. 15);

Свойства жидкости или газа (рис. 16);

Относительной скорости тела и окружающей его среды (рис. 17).

Рис. 14. Зависимости модуля силы сопротивления от геометрической формы

Рис. 15. Зависимости модуля силы сопротивления от состояния поверхности тела

Рис. 16. Зависимости модуля силы сопротивления от свойства жидкости или газа

Рис. 17. Зависимости модуля силы сопротивления от относительной скорости тела и окружающей его среды

На рисунке 18 показан график зависимости силы сопротивления от скорости тела. При относительной скорости, равной нулю, сила сопротивления не действует на тело. С увеличением относительной скорости сила сопротивления сначала растет медленно, а затем темп роста увеличивается.

Рис. 18. График зависимости силы сопротивления от скорости тела

При низких значениях относительной скорости сила сопротивления прямо пропорциональна величине этой скорости:

где – величина относительной скорости; – коэффициент сопротивления, который зависит от рода вязкой среды, формы и размеров тела.

Если относительная скорость имеет достаточно большое значение, то сила сопротивления становится пропорциональной квадрату этой скорости.

где – величина относительной скорости; – коэффициент сопротивления .

Выбор формулы для каждого конкретного случая определяется опытным путем.

Тело массой 600 г равномерно движется по горизонтальной поверхности (рис. 19). При этом к нему приложена сила, величина которой равна 1,2 Н. Определить величину коэффициента трения между телом и поверхностью.

1. Для того чтобы тело (книгу, лежащую на столе, ящик, стоящий на полу, и т.п.) сдвинуть с места, к нему нужно приложить силу. При этом при постепенном увеличении силы тело какое-то время будет оставаться в покое, а при определённом значении приложенной силы начнёт перемещаться. Силу, возникающую при непосредственном соприкосновении двух тел, называют силой трения . Эта сила всегда направлена вдоль поверхности соприкосновения.

На книгу, лежащую на столе, действуют в вертикальной плоскости уравновешивающие друг друга силы тяжести ​\(\vec{F}_т \) ​, и упругости (реакции опоры), в горизонтальной плоскости действует приложенная к ней сила \(\vec{F} \) . Поскольку книга какое-то время остается неподвижной, то это значит, что в горизонтальной плоскости действует ещё одна сила, равная по модулю силе \(\vec{F} \) и направленная в противоположную ей сторону. Этой силой является сила трения покоя . Чем большая сила прикладывается к телу (пока оно не движется), тем больше сила трения покоя.

Сила трения покоя равна по модулю и направлена противоположно силе, приложенной к покоящемуся телу параллельно поверхности его соприкосновения с другим телом.

2. При некотором значении приложенной к телу силы ​\(\vec{F} \) ​ оно приходит в движение. В момент начала движения бруска сила трения покоя имеет максимальное значение \(\vec{F}_{тр.max} \) , которое равно силе трения скольжения. Чем больше сила давления тела на поверхность соприкосновения тел перпендикулярно этой поверхности (сила нормального давления), тем больше максимальная сила трения покоя, т.е. ​\((F_{тр})_{max}=\mu N \) ​, где ​\(\mu \) ​ - коэффициент трения.

Максимальная сила трения покоя прямо пропорциональна силе нормального давления.

Сила трения покоя препятствует началу движения тела. С другой стороны, сила трения покоя может быть причиной ускорения движения тела. Так, при ходьбе сила трения покоя ​\(F_{тр} \) ​, действующая на подошву, сообщает нам ускорение. Сила ​\(F \) ​, равная по модулю силе трения покоя и направленная в противоположную сторону, сообщает ускорение опоре.

3. При движении тела на него тоже будет действовать сила трения, её называют силой трения скольжения . Сила трения скольжения - сила, действующая при скольжении одного тела по поверхности другого и направленная в сторону, противоположную перемещению тела. Она несколько меньше максимальной силы трения покоя и направлена в сторону, противоположную перемещению тела относительно соприкасающегося с ним тела.

Сила трения скольжения прямо пропорциональна силе нормального давления: \((F_{тр})_{max}=\mu N \) . В этой формуле ​\(N \) ​ - сила нормального давления, т.е. сила, действующая перпендикулярно поверхности соприкасающихся тел; ​\(\mu \) ​ - коэффициент трения. Коэффициент трения характеризует поверхности соприкасающихся тел. Он определяется экспериментально и приводится в таблицах.

Причиной трения являются неровности поверхностей. В случае хорошо отшлифованных поверхностей молекулы, находящиеся на поверхностях тел, располагаются близко друг к другу, и силы межмолекулярного взаимодействия достаточно велики.

4. Если тело катится по поверхности другого тела, то на него тоже действует сила трения. Это - сила трения качения . Она прямо пропорциональна силе нормального давления (реакции опоры) ​\(N \) ​ и обратно пропорциональна радиусу ​\(R \) ​ катящегося тела: ​\(F_{кач}=\mu\frac{N}{R} \) ​, где ​\(\mu \) ​ - коэффициент трения качения.

5. Существует целый ряд практических задач, в которых необходим учёт силы трения. Особенно важными являются задачи, связанные с движением транспорта. Хорошо известно, что для избежания аварий следует сохранять определённую дистанцию между автомобилями; в дождливую погоду или в гололедицу она должна быть больше, чем в сухую погоду.

Расстояние, которое проезжает автомобиль при торможении до полной остановки, называют тормозным путём. Рассчитывается тормозной путь но формуле ​\(s=\frac{v^2}{2a} \) ​.

Часть 1

1. При измерении коэффициента трения брусок перемещали но горизонтальной поверхности стола и получили значение силы трения ​\(F_1 \) ​. Затем на брусок положили груз, масса которого в 2 раза больше массы бруска, и получили значение силы трения \(F_2 \) . При этом сила трения \(F_2 \)

1) равна \(F_1 \)
2) в 2 раза больше \(F_1 \)
3) в 3 раза больше \(F_1 \)
4) в 2 раза меньше \(F_1 \)

2. В таблице приведены результаты измерений силы трения и силы нормального давления при исследовании зависимости между этими величинами.

Закономерность ​\(\mu=N/F_{тр} \) ​ выполняется для значений силы нормального давления

1) только от 0,4 Н до 2,0 Н
2) только от 0,4 Н до 3 Н
3) только от 0,4 Н до 4,5 Н
4) только от 2,0 Н до 4,5 Н

3. При измерении силы трения брусок перемещали по горизонтальной поверхности стола и получили значение силы трения \(F_1 \) . Затем брусок перемещали, положив его на стол гранью, площадь которой в 2 раза больше, чем в первом случае, и получили значение силы трения \(F_2 \) . Сила трения \(F_2 \)

1) равна \(F_1 \)
2) в 2 раза больше \(F_1 \)
3) в 2 раза меньше \(F_1 \)
4) в 4 раза меньше \(F_1 \)

4. Два деревянных бруска массой ​\(m_1 \) ​ и \(m_2 \) скользят по горизонтальной одинаково обработанной поверхности стола. На бруски действует сила трения скольжения \(F_1 \) и \(F_1 \) соответственно. При этом известно, что ​\(F_2=2F_1 \) ​. Следовательно, ​\(m_1 \) ​

1) \(m_1 \)
2) \(2m_2 \)
3) \(m_2/2 \)
4) ответ зависит от значения коэффициента трения

5. На рисунке приведены графики зависимости силы трения от силы нормального давления. Сравните значения коэффициента трения.

1) ​\(\mu_2=\mu_1 \) ​
2) ​\(\mu_2>\mu_1 \) ​
3) \(\mu_2<\mu_1 \)
4) \(\mu_2>>\mu_1 \)

6. Учащийся выполнял эксперимент по измерению силы трения, действующей на два тела, движущихся по горизонтальным поверхностям. Масса первого тела ​\(m_1 \) ​, масса второго тела ​\(m_2 \) ​, причем ​\(m_1 =2m_2 \) ​. Он получил результаты, представленные на рисунке в виде диаграммы. Какой вывод можно сделать из анализа диаграммы?

1) сила нормального давления ​\(N_2=2N_1 \) ​
2) сила нормального давления \(N_1=N_2 \)
3) коэффициент трения ​\(\mu_1=\mu_2 \) ​
4) коэффициент трения ​\(\mu_2=2\mu_1 \) ​

7. Два автомобиля одинаковой массы движутся один но асфальтовой дороге, а другой - по грунтовой. На диаграмме приведены значения силы трения для этих автомобилей. Сравните значения коэффициента трения (​\(\mu_1 \) ​ и \(\mu_2 \) ).

1) ​\(\mu_2=0.3\mu_1 \) ​
2) \(\mu_2=\mu_1 \)
3) \(\mu_2=1.5\mu_1 \)
4) \(\mu_2=3\mu_1 \)

8. На рисунке приведён график зависимости силы трения от силы нормального давления. Чему равен коэффициент трения?

1) 0,5
2) 0,2
3) 2
4) 5

9. Санки весом 3 кг скользят по горизонтальной дороге. Сила трения скольжения их полозьев о дорогу 6 Н. Чему равен коэффициент трения скольжения полозьев о дорогу?

1) 0,2
2) 0,5
3) 2
4) 5

10. При движении тела массой 40 кг по горизонтальной поверхности действует сила трения скольжения 10 Н. Какой станет сила трения скольжения при уменьшении массы тела в 5 раз?

1) 1 Н
2) 2 Н
3) 4 Н
4) 5 Н

11. Установите соответствие между физической величиной (левый столбец) и характером её изменения (правый столбец) при увеличении массы бруска, движущегося по столу. В ответе запишите подряд номера выбранных ответов

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A. Сила трения
Б. Коэффициент трения
B. Сила нормального давления

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) уменьшается
2) увеличивается
3) не изменяется

12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Сила трения покоя больше приложенной к телу силе.
2) Сила трения качения меньше силы трения скольжения при той же массе тела.
3) Коэффициент трения скольжения прямо пропорционален силе нормального давления.
4) Сила трения зависит от площади опоры движущегося тела при одинаково обработанной его поверхности.
5) Максимальная сила трения покоя равна силе трения скольжения.

Часть 2

13. Автомобиль, имея скорость 72 км/с, начинает тормозить с выключенным двигателем и проходит путь 100 м. Чему равны ускорение автомобиля и время торможения?

Ответы

Трение - один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.

Сухое трение, возникающее при относительном покое тел, называют трением покоя . Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону (рис. 1.13.1).

Сила трения покоя не может превышать некоторого максимального значения (F тр) max . Если внешняя сила больше (F тр) max , возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения . Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач (рис. 1.13.2).

Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры

Коэффициент пропорциональности μ называют коэффициентом трения скольжения .

Коэффициент трения μ - величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости (рис. 1.13.3).

При движении твердого тела в жидкости или газе возникает силa вязкого трения . Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.

Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях F тр ~ υ, при больших скоростях F тр ~ υ 2 . При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.

Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.