Понятие логарифмической функции

Для начала вспомним, что же вообще такое логарифм.

Определение 1

Логарифмом числа $b\in R$ по основанию $a$ ($a>0,\ a\ne 1$) называется число $c$, в которое нужно возвести число $a$, чтобы получить число $b$.

Рассмотрим показательную функцию $f\left(x\right)=a^x$, где $a >1$. Эта функция возрастает, непрерывна и отображает действительную ось на интервал $(0,+\infty)$. Тогда, по теореме о существовании обратной непрерывной функции, у нее в множестве $Y=(0,+\infty)$ существует обратная функция $x=f^{-1}(y)$, которая также непрерывна и возрастает в $Y$ и отображает интервал $(0,+\infty)$ на всю действительную ось. Эту обратную функцию называют логарифмической функцией по основанию $a\ (a >1)$ и обозначается $y={{log}_a x\ }$.

Теперь рассмотрим показательную функцию $f\left(x\right)=a^x$, где $0

Таким образом, мы определили логарифмическую функцию при всех возможных значениях основания $a$. Рассмотрим далее два этих случая отдельно.

1%24"> Функция $y={{log}_a x\ },\ a >1$

Рассмотрим свойства данной функции.

    С осью $Oy$ пересечений нет.

    Функция положительна, при $x\in (1,+\infty)$ и отрицательна, при $x\in (0,1)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    Функция возрастает на всей области определения;

    $y^{""}=-\frac{1}{x^2lna}$;

    \[-\frac{1}{x^2lna}Функция выпукла на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=-\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=+\infty ,\ $;

    График функции (Рис. 1).

Рисунок 1. График функции $y={{log}_a x\ },\ a >1$

Функция $y={{log}_a x\ }, \ 0

Рассмотрим свойства данной функции.

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, ${{log}_a x\ }=0,\ x=1.$ Пересечение с осью $Ox$: (1,0).

    Функция положительна, при $x\in (0,1)$ и отрицательна, при $x\in (1,+\infty)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    \[\frac{1}{xlna}=0-корней\ нет\]

    Точек максимума и минимума нет.

    $y^{""}=-\frac{1}{x^2lna}$;

    Промежутки выпуклости и вогнутости:

    \[-\frac{1}{x^2lna}>0\]

    График функции (Рис. 2).

Примеры исследования и построения логарифмических функций

Пример 1

Исследовать и построить график функции $y=2-{{log}_2 x\ }$

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, $2-{{log}_2 x\ }=0,\ x=4.$ Пересечение с осью $Ox$: (4,0).

    Функция положительна, при $x\in (0,4)$ и отрицательна, при $x\in (4,+\infty)$

    $y"=-\frac{1}{xln2}$;

    Точки минимума и максимума:

    \[-\frac{1}{xln2}=0-корней\ нет\]

    Точек максимума и минимума нет.

    Функция убывает на всей области определения;

    $y^{""}=\frac{1}{x^2ln2}$;

    Промежутки выпуклости и вогнутости:

    \[\frac{1}{x^2ln2} >0\]

    Функция вогнута на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=+\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=-\infty ,\ $;

Рисунок 3.

Cтраница 1


Логарифмическая функция (80) осуществляет обратное отображение всей плоскости w с разрезом на полосу - я / /: я, бес-конечнолистную риманову поверхность на полную z - плоскость.  


Логарифмическая функция: у logaх, где основание логарифмов а-положительное число, не равное единице.  

Логарифмическая функция играет специальную роль в разработке и анализе алгоритмов, поэтому ее стоит рассмотреть подробнее. Поскольку мы часто имеем дело с аналитическими результатами, в которых опущен постоянный множитель, мы используем запись log TV, опуская основание. Изменение основания логарифма меняет значение логарифма лишь на постоянный множитель, однако, в определенном контексте возникают специальные значения основания логарифма.  

Логарифмическая функция обратна показательной. График ее (рис. 247) получается из графика показательной функции (при том же основании) перегибом чертежа по биссектрисе первого координатного угла. Так же получается график всякой обратной функции.  

Логарифмическая функция вводится Затем как обратная показательной. Свойства обеих функций выводятся без труда из этих определений. Именно это определение получило одобрение Гаусса, который вместе с тем выразил несогласие с оценкой, данной ему в рецензии Геттинген-ских ученых известий. При этом Гаусс подошел к вопросу с более широкой точки зрения, чем да Кунья. Последний ограничился рассмотрением показательной и логарифмической функций в действительной области, между тем как Гаусс распространил их определение на комплексные переменные.  

Логарифмическая функция y logax монотонна во всей области своего определения.  

Логарифмическая функция непрерывна и дифференцируема во всей области определения.  

Логарифмическая функция монотонно возрастает, если а I, При 0 а 1 логарифмическая функция с основанием а монотонно убывает.  

Логарифмическая функция определена только для положительных значений х и взаимно однозначно отображает интервал (0; 4 - ос.  

Логарифмическая функция у loga х является обратной функцией по отношению к показательной функции уах.  

Логарифмическая функция: y ogax, где основание логарифмов а - положительное число, не равное единице.  

Логарифмические функции хорошо сочетаются с физическими представлениями о характере ползучести полиэтилена в условиях, когда скорость деформации невелика. В этом отношении они совпадают с уравнением Андрааде, поэтому их иногда применяют для аппроксимации экспериментальных данных.  

Логарифмическая функция, или натуральный логарифм, и In z, определяется решением трансцендентного уравнения г еи относительно и. В области действительных значений х и у при условии х 0 это уравнение допускает единственное решение.  

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при src="/pictures/wiki/files/55/7cd1159e49fee8eff61027c9cde84a53.png" border="0">.

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0 , непрерывна и дифференцируема там (см. рис. 1).

Свойства

Натуральные логарифмы

При справедливо равенство

(1)

В частности,

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

  • Химия - активность водородных ионов ().
  • Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Комплексный логарифм

Многозначная функция

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1 , особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0 .

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке. В книге «Введение в анализ бесконечных» () Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3 . Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега () появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

  • Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Раздел логарифмов занимает огромное значение в школьном курсе «Математического анализа». Задания для логарифмических функций построены на иных принципах, нежели задачи для неравенств и уравнений. Знание определений и основных свойств понятий логарифм и логарифмическая функция, обеспечат успешное решение типовых задач ЕГЭ.

Прежде чем приступить к объяснению, что представляет собой логарифмическая функция, стоит обратиться к определению логарифма.

Разберем конкретный пример: а log a x = x, где a › 0, a ≠ 1.

Основные свойства логарифмов можно перечислить несколькими пунктами:

Логарифмирование

Логарифмированием называют математическую операцию, которая позволяет с помощью свойств понятия найти логарифм числа или выражения.

Примеры:

Функция логарифма и ее свойства

Логарифмическая функция имеет вид

Сразу отметим, что график функции может быть возрастающим при a › 1 и убывающим при 0 ‹ a ‹ 1. В зависимости от этого кривая функции будет иметь тот или иной вид.

Приведем свойства и способ построения графиков логарифмов:

  • область определения f(x) – множество всех положительных чисел, т.е. x может принимать любое значение из интервала (0; + ∞);
  • ОДЗ функции – множество всех действительных чисел, т.е. y может быть равен любому числу из промежутка (— ∞; +∞);
  • если основание логарифма а › 1, то f(x) возрастает на всей области определения;
  • если основание логарифма 0 ‹ a ‹ 1, то F – убывающая;
  • логарифмическая функция не является ни четной, ни нечетной;
  • кривая графика всегда проходит через точку с координатами (1;0).

Построить обе разновидности графиков очень просто, рассмотрим процесс на примере

Для начала необходимо вспомнить свойства простого логарифма и ее функции. С их помощью нужно построить таблицу для конкретных значений x и y. Затем на координатной оси следует отметить полученные точки и соединить их плавной линией. Эта кривая и будет являться требуемым графиком.

Логарифмическая функция является обратной для показательной функции, заданной формулой y= а x . Чтобы убедиться в этом, достаточно нарисовать обе кривые на одной координатной оси.

Очевидно, что обе линии являются зеркальным отражением друг друга. Построив прямую y = x, можно увидеть ось симметрии.

Для того, чтобы быстро найти ответ задачи нужно рассчитать значения точек для y = log 2⁡ x, а затем просто перенести начала точки координат на три деления вниз по оси OY и на 2 деления влево по оси OX.

В качестве доказательства построим расчетную таблицу для точек графика y = log 2 ⁡(x+2)-3 и сравним полученные значения с рисунком.

Как видно, координаты из таблицы и точек на графике совпадают, следовательно, перенос по осям был осуществлен правильно.

Примеры решения типовых задач ЕГЭ

Большую часть тестовых задач можно разделить на две части: поиск области определения, указания вида функции по рисунку графика, определение является ли функция возрастающей/убывающей.

Для быстрого ответа на задания необходимо четко уяснить, что f(x) возрастает, если показатель логарифма а › 1, а убывает – при 0 ‹ а ‹ 1. Однако, не только основание, но и аргумент может сильно повлиять на вид кривой функции.

F(x), отмеченные галочкой, являются правильными ответами. Сомнения в данном случае вызывают пример 2 и 3. Знак «-» перед log меняет возрастающую на убывающую и наоборот.

Поэтому график y=-log 3⁡ x убывает на всей области определения, а y= -log (1/3) ⁡x – возрастает, при том, что основание 0 ‹ a ‹ 1.

Ответ : 3,4,5.

Ответ : 4.

Данные типы заданий считаются легкими и оцениваются в 1- 2 балла.

Задание 3.

Определить убывающая или возрастающая ли функция и указать область ее определения.

Y = log 0.7 ⁡(0,1x-5)

Так как основание логарифма меньше единицы, но больше нуля – функция от x является убывающей. Согласно свойствам логарифма аргумент также должен быть больше нуля. Решим неравенство:

Ответ : область определения D(x) – интервал (50; + ∞).

Ответ : 3, 1, оси OX, направо.

Подобные задания классифицируются как средние и оцениваются в 3 — 4 балла.

Задание 5 . Найти область значений для функции:

Из свойств логарифма известно, что аргумент может быть только положительным. Поэтому рассчитаем область допустимых значений функции. Для этого нужно будет решить систему из двух неравенств.